A322340 Number of compositions (ordered partitions) of n into square pyramidal numbers (A000330).
1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 8, 11, 15, 20, 27, 36, 48, 64, 85, 114, 153, 205, 274, 365, 487, 651, 871, 1165, 1557, 2080, 2780, 3716, 4967, 6639, 8873, 11860, 15853, 21189, 28320, 37850, 50589, 67618, 90379, 120799, 161456, 215797, 288430, 385512, 515269, 688699
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..7939
- Eric Weisstein's World of Mathematics, Square Pyramidal Number
- Index entries for sequences related to compositions
Programs
-
Maple
h:= proc(n) option remember; `if`(n<1, 0, (t-> `if`(t*(t+1)*(2*t+1)/6>n, t-1, t))(1+h(n-1))) end: a:= proc(n) option remember; `if`(n=0, 1, add(a(n-i*(i+1)*(2*i+1)/6), i=1..h(n))) end: seq(a(n), n=0..60); # Alois P. Heinz, Dec 28 2018
-
Mathematica
nmax = 49; CoefficientList[Series[1/(1 - Sum[x^(k (k + 1) (2 k + 1)/6), {k, 1, nmax}]), {x, 0, nmax}], x]
Formula
G.f.: 1/(1 - Sum_{k>=1} x^(k*(k+1)*(2*k+1)/6)).