A322417 a(n) - 2*a(n-1) = period 2: repeat [3, 0] for n > 0, a(0)=5, a(1)=13.
5, 13, 26, 55, 110, 223, 446, 895, 1790, 3583, 7166, 14335, 28670, 57343, 114686, 229375, 458750, 917503, 1835006, 3670015, 7340030, 14680063, 29360126, 58720255, 117440510, 234881023, 469762046, 939524095, 1879048190, 3758096383, 7516192766
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,1,-2).
Programs
-
GAP
a:=[13,26];; for n in [3..30] do a[n]:=a[n-2]+21*2^(n-2); od; Concatenation([5],a); # Muniru A Asiru, Dec 07 2018
-
Mathematica
a[0] = 5; a[1] = 13; a[n_] := a[n] = a[n - 2] + 21*2^(n - 2); Array[a, 30, 0] (* Amiram Eldar, Dec 07 2018 *) LinearRecurrence[{2, 1, -2}, {5, 13, 26}, 31] (* Jean-François Alcover, Jan 28 2019 *)
-
PARI
Vec((5 + 3*x - 5*x^2) / ((1 - x)*(1 + x)*(1 - 2*x)) + O(x^40)) \\ Colin Barker, Dec 07 2018
Formula
a(n) = a(n-2) + 21*2^(n-2) for n >= 2.
a(n) = a(n-1) + A321483(n) for n > 0.
From Colin Barker, Dec 07 2018: (Start)
G.f.: (5 + 3*x - 5*x^2) / ((1 - x)*(1 + x)*(1 - 2*x)).
a(n) = 7*2^n - 2 for n even.
a(n) = 7*2^n - 1 for n odd.
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) for n > 2.
(End)
Extensions
First formula corrected by Jean-François Alcover, Feb 01 2019
Comments