A322428 Sum T(n,k) of k-th largest parts of all compositions of n; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
1, 3, 1, 8, 3, 1, 19, 8, 4, 1, 43, 20, 11, 5, 1, 94, 48, 27, 16, 6, 1, 202, 110, 64, 42, 22, 7, 1, 428, 245, 149, 100, 64, 29, 8, 1, 899, 533, 341, 228, 163, 93, 37, 9, 1, 1875, 1142, 765, 512, 383, 256, 130, 46, 10, 1, 3890, 2420, 1683, 1144, 859, 638, 386, 176, 56, 11, 1
Offset: 1
Examples
The 4 compositions of 3 are: 111, 12, 21, 3. The sums of k-th largest parts for k=1..3 give: 1+2+2+3 = 8, 1+1+1+0 = 3, 1+0+0+0 = 1. Triangle T(n,k) begins: 1; 3, 1; 8, 3, 1; 19, 8, 4, 1; 43, 20, 11, 5, 1; 94, 48, 27, 16, 6, 1; 202, 110, 64, 42, 22, 7, 1; 428, 245, 149, 100, 64, 29, 8, 1; 899, 533, 341, 228, 163, 93, 37, 9, 1; 1875, 1142, 765, 512, 383, 256, 130, 46, 10, 1; ...
Links
- Alois P. Heinz, Rows n = 1..50, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, l) option remember; `if`(n=0, add(l[-i]*x^i, i=1..nops(l)), add(b(n-j, sort([l[], j])), j=1..n)) end: T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n, [])): seq(T(n), n=1..12);
-
Mathematica
b[n_, l_] := b[n, l] = If[n == 0, Sum[l[[-i]] x^i, {i, 1, Length[l]}], Sum[b[n - j, Sort[Append[l, j]]], {j, 1, n}]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, Exponent[p, x]}]][ b[n, {}]]; Array[T, 12] // Flatten (* Jean-François Alcover, Dec 29 2018, after Alois P. Heinz *)