A322433 Numbers k such that the coefficient of x^k in the expansion of Product_{j>=1} (1-x^j)^26 is zero.
9, 20, 31, 42, 43, 53, 64, 66, 75, 86, 89, 97, 108, 112, 119, 135, 136, 141, 152, 158, 163, 171, 174, 181, 183, 185, 196, 204, 206, 207, 218, 227, 229, 230, 240, 241, 250, 262, 273, 277, 284, 289, 295, 296, 306, 311, 317, 319, 324, 328, 339, 342, 348, 350, 361, 365
Offset: 1
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
PARI
my(x='x+O('x^400)); Vec(select(x->(x==0), Vec(eta(x)^26 - 1), 1)) \\ Michel Marcus, Dec 08 2018
Comments