cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322438 Number of unordered pairs of factorizations of n into factors > 1 where no factor of one properly divides any factor of the other.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 4
Offset: 1

Views

Author

Gus Wiseman, Dec 08 2018

Keywords

Comments

First differs from A322437 at a(144) = 4, A322437(144) = 3.
First differs from A379958 at a(120) = 2, A379958(120) = 1.

Examples

			The a(240) = 5 pairs of factorizations::
  (4*4*15)|(4*6*10)
    (6*40)|(15*16)
    (8*30)|(12*20)
   (10*24)|(15*16)
   (12*20)|(15*16)
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    divpropQ[x_,y_]:=And[x!=y,Divisible[x,y]];
    Table[Length[Select[Subsets[facs[n],{2}],And[!Or@@divpropQ@@@Tuples[#],!Or@@divpropQ@@@Reverse/@Tuples[#]]&]],{n,100}]
  • PARI
    factorizations(n, m=n, f=List([]), z=List([])) = if(1==n, listput(z,Vec(f)); z, my(newf); fordiv(n, d, if((d>1)&&(d<=m), newf = List(f); listput(newf,d); z = factorizations(n/d, d, newf, z))); (z));
    is_proper_ndf_pair(fac1,fac2) = { for(i=1,#fac1,for(j=1,#fac2,if((fac1[i]!=fac2[j]) && (!(fac1[i]%fac2[j]) || !(fac2[j]%fac1[i])),return(0)))); (1); };
    number_of_proper_ndfpairs(z) = sum(i=1,#z,sum(j=i+1,#z,is_proper_ndf_pair(z[i],z[j])));
    A322438(n) = number_of_proper_ndfpairs(Vec(factorizations(n))); \\ Antti Karttunen, Jan 24 2025

Extensions

Data section extended up to a(144) by Antti Karttunen, Jan 24 2025