cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A322444 Primes that are not base-8 deletable primes (written in base 10).

Original entry on oeis.org

71, 73, 79, 97, 103, 113, 127, 149, 173, 193, 227, 241, 257, 263, 271, 281, 283, 307, 311, 313, 409, 419, 433, 439, 449, 457, 463, 487, 503, 521, 569, 577, 587, 593, 599, 607, 617, 631, 641, 647, 653, 661, 673, 701, 727, 733, 739, 743, 757, 769, 823, 827, 839, 881, 887, 907, 911, 919, 929
Offset: 1

Views

Author

Robert Price, Dec 08 2018

Keywords

Comments

A prime p is a base-b deletable prime if when written in base b it has the property that removing some digit leaves either the empty string or another deletable prime.
Deleting a digit cannot leave any leading zeros in the new string. For example, deleting the 2 in 2003 to obtain 003 is not allowed.
Complement of all primes and A322443 .

Crossrefs

Programs

  • Mathematica
    b = 8; d = {};
    p = Select[Range[2, 10000], PrimeQ[#] &];
    For[i = 1, i <= Length[p], i++,
    c = IntegerDigits[p[[i]], b];
    If[Length[c] == 1, AppendTo[d, p[[i]]]; Continue[]];
    For[j = 1, j <= Length[c], j++,
    t = Delete[c, j];
    If[t[[1]] == 0, Continue[]];
    If[MemberQ[d, FromDigits[t, b]], AppendTo[d, p[[i]]]; Break[]]]]; Complement[Table[Prime[n], {n, PrimePi[Last[d]]}], d] (* Robert Price, Dec 08 2018 *)

A096241 Number of n-digit base-8 deletable primes.

Original entry on oeis.org

4, 14, 50, 238, 1123, 5792, 30598, 166056, 927639, 5308458, 30984757
Offset: 1

Views

Author

Michael Kleber, Feb 28 2003

Keywords

Comments

A prime p is a base-b deletable prime if when written in base b it has the property that removing some digit leaves either the empty string or another deletable prime. "Digit" means digit in base b.
Deleting a digit cannot leave any leading zeros in the new string. For example, deleting the 2 in 2003 to obtain 003 is not allowed.

Crossrefs

Programs

  • Mathematica
    b = 8; a = {4}; d = {2, 3, 5, 7};
    For[n = 2, n <= 5, n++,
      p = Select[Range[b^(n - 1), b^n - 1], PrimeQ[#] &];
      ct = 0;
      For[i = 1, i <= Length[p], i++,
       c = IntegerDigits[p[[i]], b];
       For[j = 1, j <= n, j++,
        t = Delete[c, j];
        If[t[[1]] == 0, Continue[]];
        If[MemberQ[d, FromDigits[t, b]], AppendTo[d, p[[i]]]; ct++;
         Break[]]]];
      AppendTo[a, ct]];
    a (* Robert Price, Nov 13 2018 *)
  • Python
    from sympy import isprime
    def ok(n, prevset, base=8):
        if not isprime(n): return False
        s = oct(n)[2:]
        si = (s[:i]+s[i+1:] for i in range(len(s)))
        return any(t[0] != '0' and int(t, base) in prevset for t in si)
    def afind(terms):
        s, snxt = {2, 3, 5, 7}, set()
        print(len(s), end=", ")
        for n in range(2, terms+1):
            for i in range(8**(n-1), 8**n):
                if ok(i, s):
                    snxt.add(i)
            s, snxt = snxt, set()
            print(len(s), end=", ")
    afind(7) # Michael S. Branicky, Jan 14 2022

Extensions

a(6)-a(10) from Ryan Propper, Jul 19 2005
a(11) from D. S. McNeil, Dec 08 2009
Showing 1-2 of 2 results.