A322453 Number of factorizations of n into factors > 1 using only primes and perfect powers.
1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 11, 1, 1, 1, 2, 1, 1, 1, 7, 1, 1, 2, 2, 1, 1, 1, 5, 5, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 7, 1, 2, 2, 5, 1, 1, 1, 3, 1
Offset: 1
Keywords
Examples
The a(144) = 13 factorizations: (144), (4*36), (9*16), (2*2*36), (2*8*9), (3*3*16), (4*4*9), (2*2*4*9), (2*3*3*8), (3*3*4*4), (2*2*2*2*9), (2*2*3*3*4), (2*2*2*2*3*3).
Links
Crossrefs
Programs
-
Mathematica
perpowQ[n_]:=GCD@@FactorInteger[n][[All,2]]>1; pfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[pfacs[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],Or[PrimeQ[#],perpowQ[#]]&]}]]; Table[Length[pfacs[n]],{n,100}]
-
PARI
A322453(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m)&&(ispower(d)||isprime(d)), s += A322453(n/d, d))); (s)); \\ Antti Karttunen, Dec 26 2018
Extensions
More terms from Antti Karttunen, Dec 24 2018
Comments