cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322453 Number of factorizations of n into factors > 1 using only primes and perfect powers.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 11, 1, 1, 1, 2, 1, 1, 1, 7, 1, 1, 2, 2, 1, 1, 1, 5, 5, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 7, 1, 2, 2, 5, 1, 1, 1, 3, 1
Offset: 1

Views

Author

Gus Wiseman, Dec 09 2018

Keywords

Comments

First differs from A000688 at a(36) = 5, A000688(36) = 4.
Terms in this sequence only depend on the prime signature of n. - David A. Corneth, Dec 26 2018

Examples

			The a(144) = 13 factorizations:
  (144),
  (4*36), (9*16),
  (2*2*36), (2*8*9), (3*3*16), (4*4*9),
  (2*2*4*9), (2*3*3*8), (3*3*4*4),
  (2*2*2*2*9), (2*2*3*3*4),
  (2*2*2*2*3*3).
		

Crossrefs

Programs

  • Mathematica
    perpowQ[n_]:=GCD@@FactorInteger[n][[All,2]]>1;
    pfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[pfacs[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],Or[PrimeQ[#],perpowQ[#]]&]}]];
    Table[Length[pfacs[n]],{n,100}]
  • PARI
    A322453(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m)&&(ispower(d)||isprime(d)), s += A322453(n/d, d))); (s)); \\ Antti Karttunen, Dec 26 2018

Extensions

More terms from Antti Karttunen, Dec 24 2018