cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322484 Semi-unitary highly composite numbers: where the number of semi-unitary divisors of n (A322483) increases to a record.

Original entry on oeis.org

1, 2, 6, 24, 30, 120, 210, 840, 2310, 7560, 9240, 30030, 83160, 120120, 480480, 1081080, 1921920, 2042040, 8168160, 18378360, 32672640, 38798760, 155195040, 349188840, 620780160, 892371480, 3569485920, 8031343320, 14277943680, 25878772920, 103515091680
Offset: 1

Views

Author

Amiram Eldar, Dec 11 2018

Keywords

Comments

The record numbers of semi-unitary divisors are 1, 2, 4, 6, 8, 12, 16, 24, 32, 36, 48, 64, 72, 96, 128, 144, 160, 192, 256, 288, 320, 384, 512, 576, 640, 768, 1024, 1152, 1280, 1536, 2048, ... (see the link for more values).

Crossrefs

Analogous sequences: A002182 (regular divisors), A002110 (unitary divisors), A293185 (bi-unitary).
Cf. A322483.

Programs

  • Mathematica
    f[p_, e_] := Floor[(e+3)/2]; sud[n_] := If[n==1, 1, Times @@ (f @@@ FactorInteger[n])]; seq={}; sm=0; Do[s = sud[k]; If[s > sm, AppendTo[seq, k]; sm = s], {k, 1, 100000}]; seq
  • PARI
    nbu(n) = {my(f = factor(n)); for (k=1, #f~, f[k,1] = (f[k,2]+3)\2; f[k,2] = 1;); factorback(f);} \\ A322483
    lista(nn) = {my(m = 0, nb); for (n=1, nn, nb = nbu(n); if (nb > m, m = nb; print1(n, ", ")););} \\ Michel Marcus, Dec 14 2018