A322490 Numbers k such that k^k ends with 7.
3, 17, 23, 37, 43, 57, 63, 77, 83, 97, 103, 117, 123, 137, 143, 157, 163, 177, 183, 197, 203, 217, 223, 237, 243, 257, 263, 277, 283, 297, 303, 317, 323, 337, 343, 357, 363, 377, 383, 397, 403, 417, 423, 437, 443, 457, 463, 477, 483, 497, 503, 517, 523, 537, 543, 557, 563
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Crossrefs
Programs
-
GAP
List([1..70], n -> 10*n+2*(-1)^n-5);
-
Julia
[10*n+2*(-1)^n-5 for n in 1:70] |> println
-
Magma
[10*n+2*(-1)^n-5: n in [1..70]];
-
Maple
select(n->n^n mod 10=7,[$1..563]); # Paolo P. Lava, Dec 18 2018
-
Mathematica
Table[10 n + 2 (-1)^n - 5, {n, 1, 60}] LinearRecurrence[{1,1,-1},{3,17,23},80] (* Harvey P. Dale, Sep 15 2019 *)
-
Maxima
makelist(10*n+2*(-1)^n-5, n, 1, 70);
-
PARI
apply(A322490(n)=10*n+2*(-1)^n-5, [1..70])
-
PARI
Vec(x*(3 + 14*x + 3*x^2) / ((1 + x)*(1 - x)^2) + O(x^55)) \\ Colin Barker, Dec 13 2018
-
Python
[10*n+2*(-1)**n-5 for n in range(1, 70)]
-
Sage
[10*n+2*(-1)^n-5 for n in (1..70)]
Formula
O.g.f.: x*(3 + 14*x + 3*x^2)/((1 + x)*(1 - x)^2).
E.g.f.: 3 + 2*exp(-x) + 5*(2*x - 1)*exp(x).
a(n) = -a(-n+1) = a(n-1) + a(n-2) - a(n-3).
a(n) = 10*n + 2*(-1)^n - 5. Therefore:
a(n) = 10*n - 7 for odd n;
a(n) = 10*n - 3 for even n.
a(n+2*k) = a(n) + 20*k.
Sum_{n>=1} (-1)^(n+1)/a(n) = tan(7*Pi/20)*Pi/20. - Amiram Eldar, Feb 27 2023
Comments