A322496 Number of tilings of a 3 X n rectangle using V (2m+1)-ominoes (m >= 0) in standard orientation.
1, 1, 3, 8, 18, 44, 107, 257, 621, 1500, 3620, 8740, 21101, 50941, 122983, 296908, 716798, 1730504, 4177807, 10086117, 24350041, 58786200, 141922440, 342631080, 827184601, 1997000281, 4821185163, 11639370608, 28099926378, 67839223364, 163778373107
Offset: 0
Examples
a(3) = 8: ._____. ._____. ._____. ._____. ._____. ._____. ._____. ._____. |_|_|_| | |_|_| |_|_|_| |_| |_| |_|_|_| |_| |_| | |_|_| | | |_| |_|_|_| |___|_| | |_|_| |_|___| |_| |_| | |___| | |_|_| | |___| |_|_|_| |_|_|_| |___|_| |_|_|_| |_|___| |___|_| |_____| |_____| .
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Wikipedia, Polyomino
- Index entries for linear recurrences with constant coefficients, signature (1,2,3,1).
Crossrefs
Column k=3 of A322494.
Programs
-
Maple
a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <1|3|2|1>>^n)[4$2]: seq(a(n), n=0..40);
Formula
G.f.: -1/((x^2+x+1)*(x^2+2*x-1)).
a(n) = 2*a(n-1) + a(n-2) + A049347(n). - Greg Dresden, May 18 2020
Comments