A322512 Triangle read by rows of the 2-adic valuation (A007814) of Stirling numbers of first kind (A008275).
0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 3, 1, 0, 1, 0, 3, 1, 0, 0, 0, 0, 4, 2, 3, 0, 0, 0, 0, 4, 2, 2, 0, 3, 1, 2, 0, 7, 4, 2, 2, 0, 3, 1, 2, 0, 7, 4, 2, 5, 0, 0, 1, 1, 0, 0, 8, 5, 3, 2, 1, 0, 0, 1, 3, 0, 0, 8, 5, 3, 2, 1, 0, 1, 0, 1, 0, 1, 0, 10, 7, 7, 3, 2, 1, 0, 1, 0, 1, 0, 1, 0
Offset: 1
Examples
Triangle begins: 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 3, 1, 0, 1, 0, 3, 1, 0, 0, 0, 0, 4, 2, 3, 0, 0, 0, 0, 4, 2, 2, 0, 3, 1, 2, 0, ...
Links
- Min Qiu, Shaofang Hong, The 2-adic valuations of Stirling numbers of the first kind, arXiv:1812.04539 [math.NT], 2018.
Programs
-
Mathematica
T[n_, k_] := IntegerExponent[StirlingS1[n, k], 2]; Table[T[n, k], {n, 1, 20}, {k, 1, n}] // Flatten (* Amiram Eldar, Dec 13 2018 *)
-
PARI
T(n,k) = valuation(stirling(n, k, 1), 2); row(n) = vector(n, k, T(n,k)); tabl(nn) = vector(nn, k, row(k));(PARI) T(n,k) = valuation(stirling(n, k, 1), 2);