cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322541 Lesser of semi-unitary amicable numbers pair: numbers (m, n) such that susigma(m) = susigma(n) = m + n, where susigma(n) is the sum of the semi-unitary divisors of n (A322485).

Original entry on oeis.org

114, 366, 1140, 3660, 3864, 5016, 11040, 15210, 16104, 16536, 18480, 44772, 57960, 67158, 68640, 68880, 142290, 142310, 155760, 196248, 198990, 240312, 248040, 275520, 278160, 308220, 322080, 326424, 339822, 348840, 352632, 366792, 462330, 485760, 607920
Offset: 1

Views

Author

Amiram Eldar, Dec 14 2018

Keywords

Examples

			114 is in the sequence since it is the lesser of the amicable pair (114, 126): susigma(114) = susigma(126) = 114 + 126.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^Floor[(e + 1)/2] - 1)/(p - 1) + p^e; s[n_] := If[n == 1, 1, Times @@ (f @@@ FactorInteger[n])] - n; seq = {}; Do[n = s[m]; If[n > m && s[n] == m, AppendTo[seq, m]], {m, 1, 1000000}]; seq
  • PARI
    susigma(n) = {my(f = factor(n)); for (k=1, #f~, my(p=f[k, 1], e=f[k, 2]); f[k, 1] = (p^((e+1)\2) - 1)/(p-1) + p^e; f[k, 2] = 1; ); factorback(f); } \\ A322485
    isok(n) = my(m=susigma(n)-n); (m > n) && (susigma(m) == n + m); \\ Michel Marcus, Dec 15 2018