cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A324708 Lesser of tri-unitary amicable numbers pair: numbers (m, n) such that tsigma(m) = tsigma(n) = m + n, where tsigma(n) is the sum of the tri-unitary divisors of n (A324706).

Original entry on oeis.org

114, 594, 1140, 5940, 8640, 10744, 12285, 13500, 44772, 60858, 62100, 67095, 67158, 79296, 79650, 79750, 118500, 142310, 143808, 177750, 185368, 298188, 308220, 356408, 377784, 462330, 545238, 600392, 608580, 609928, 624184, 635624, 643336, 643776, 669900
Offset: 1

Views

Author

Amiram Eldar, Mar 11 2019

Keywords

Comments

The larger counterparts are in A324709.

Examples

			114 is in the sequence since it is the lesser of the amicable pair (114, 126): tsigma(114) = tsigma(126) = 114 + 126.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 3, (p^4-1)/(p-1), If[e==6, (p^8-1)/(p^2-1), p^e+1]]; tsigma[1]=1; tsigma[n_]:= Times @@ f @@@ FactorInteger[n]; s[n_] := tsigma[n] - n; seq={}; Do[m=s[n]; If[m>n && s[m]==n, AppendTo[seq, n]] ,{n,1,700000}]; seq

A322542 Larger of semi-unitary amicable numbers pair: numbers (m, n) such that susigma(m) = susigma(n) = m + n, where susigma(n) is the sum of the semi-unitary divisors of n (A322485).

Original entry on oeis.org

126, 378, 1260, 3780, 4584, 5544, 11424, 15390, 16632, 16728, 25296, 49308, 68760, 73962, 88608, 84336, 179118, 168730, 172560, 225096, 256338, 266568, 250920, 297024, 287280, 365700, 374304, 391656, 374418, 387720, 386568, 393528, 548550, 502656, 623280
Offset: 1

Views

Author

Amiram Eldar, Dec 14 2018

Keywords

Comments

The terms are ordered according to the order of their lesser counterparts (A322541).

Examples

			126 is in the sequence since it is the larger of the amicable pair (114, 126): susigma(114) = susigma(126) = 114 + 126.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^Floor[(e + 1)/2] - 1)/(p - 1) + p^e; s[n_] := If[n == 1, 1, Times @@ (f @@@ FactorInteger[n])] - n; seq = {}; Do[n = s[m]; If[n > m && s[n] == m, AppendTo[seq, n]], {m, 1, 1000000}]; seq
  • PARI
    susigma(n) = {my(f = factor(n)); for (k=1, #f~, my(p=f[k, 1], e=f[k, 2]); f[k, 1] = (p^((e+1)\2) - 1)/(p-1) + p^e; f[k, 2] = 1; ); factorback(f); } \\ A322485
    lista(nn) = {for (n=1, nn, my(m=susigma(n)-n); if ((m > n) && (susigma(m) == n + m), print1(m, ", ")););} \\ Michel Marcus, Dec 15 2018

A348343 Smaller member of a noninfinitary amicable pair: numbers (k, m) such that nisigma(k) = m and nisigma(m) = k, where nisigma(k) is the sum of the noninfinitary divisors of k (A348271).

Original entry on oeis.org

336, 1792, 5376, 6096, 21504, 32004, 97536, 34062336, 64512000, 118008576, 30064771072
Offset: 1

Views

Author

Amiram Eldar, Oct 13 2021

Keywords

Comments

The larger counterparts are in A348344.

Examples

			336 is a term since A348271(336) = 448 and A348271(448) = 336.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ f @@@ FactorInteger[n]; s[n_] := DivisorSigma[1,n] - isigma[n]; seq={}; Do[m=s[n]; If[m>n && s[m]==n, AppendTo[seq, n]], {n,1,10^4}]; seq

A357495 Lesser of a pair of amicable numbers k < m such that s(k) = m and s(m) = k, where s(k) = A162296(k) - k is the sum of aliquot divisors of k that have a square factor.

Original entry on oeis.org

880, 10480, 20080, 24928, 42976, 69184, 110565, 252080, 267712, 489472, 566656, 569240, 603855, 626535, 631708, 687424, 705088, 741472, 786896, 904365, 1100385, 1234480, 1280790, 1425632, 1749824, 1993750, 2012224, 2401568, 2439712, 2496736, 2542496, 2573344, 2671856
Offset: 1

Views

Author

Amiram Eldar, Oct 01 2022

Keywords

Comments

Analogous to amicable numbers (A002025 and A002046) with nonsquarefree divisors.
The larger counterparts are in A357496.
Both members of each pair are necessarily nonsquarefree numbers.

Examples

			880 is a term since s(880) = 1136 and s(1136) = 880.
		

Crossrefs

Programs

  • Mathematica
    s[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; Times @@ ((p^(e + 1) - 1)/(p - 1)) - Times @@ (p + 1) - n]; seq = {}; Do[m = s[n]; If[m > n && s[m] == n, AppendTo[seq, n]], {n, 2, 3*10^6}]; seq

A371419 Lesser member of Carmichael's variant of amicable pair: numbers k < m such that s(k) = m and s(m) = k, where s(k) = A371418(k).

Original entry on oeis.org

12, 48, 112, 160, 192, 448, 1984, 12288, 28672, 126976, 196608, 458752, 520192, 786432, 1835008, 2031616, 8126464, 8323072, 33292288, 536805376, 2147221504, 3221225472, 7516192768, 33285996544, 34359476224, 136365211648
Offset: 1

Views

Author

Amiram Eldar, Mar 23 2024

Keywords

Comments

Analogous to amicable numbers (A002025 and A002046) with the largest aliquot divisor of the sum of divisors (A371418) instead of the sum of aliquot divisors (A001065).
Carmichael (1921) proposed this function (A371418) for the purpose of studying periodic chains that are formed by repeatedly applying the mapping x -> A371418(x). The chains of cycle 2 are analogous to amicable numbers.
Carmichael noted that if q < p are two different Mersenne exponents (A000043), then 2^(p-1)*(2^q-1) and 2^(q-1)*(2^p-1) are an amicable pair. With the 51 Mersenne exponents that are currently known it is possible to calculate 51 * 50 / 2 = 1275 amicable pairs. (160, 189) is a pair that is not of this "Mersenne form". Are there any other pairs like it? There are no other such pairs with lesser member below a(26).
a(27) <= 8795019280384.
The greater counterparts are in A371420.

Examples

			12 is a term since A371418(12) = 14 > 12, and A371418(14) = 12.
		

Crossrefs

Programs

  • Mathematica
    r[n_] := n/FactorInteger[n][[1, 1]]; s[n_] := r[DivisorSigma[1, n]]; seq = {}; Do[m = s[n]; If[m > n && s[m] == n, AppendTo[seq, n]], {n, 1, 10^6}]; seq
  • PARI
    f(n) = {my(s = sigma(n)); if(s == 1, 1, s/factor(s)[1, 1]);}
    lista(nmax) = {my(m); for(n = 1, nmax, m = f(n); if(m > n && f(m) == n, print1(n, ", ")));}

A348602 Smaller member of a nonexponential amicable pair: numbers (k, m) such that nesigma(k) = m and nesigma(m) = k, where nesigma(k) is the sum of the nonexponential divisors of k (A160135).

Original entry on oeis.org

198, 18180, 142310, 1077890, 1156870, 1511930, 1669910, 2236570, 2728726, 3776580, 4246130, 4532710, 5123090, 5385310, 6993610, 7288930, 8619765, 8754130, 8826070, 9478910, 10254970, 14426230, 17041010, 17257695, 21448630, 30724694, 34256222, 35361326, 37784810
Offset: 1

Views

Author

Amiram Eldar, Oct 25 2021

Keywords

Comments

The larger counterparts are in A348603.

Examples

			198 is a term since A160135(198) = 204 and A160135(204) = 198.
		

Crossrefs

Programs

  • Mathematica
    esigma[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; s[n_] := DivisorSigma[1, n] - esigma[n]; seq = {}; Do[m = s[n]; If[m > n && s[m] == n, AppendTo[seq, n]], {n, 1, 1.7*10^6}]; seq
Showing 1-6 of 6 results.