cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A324709 Larger of tri-unitary amicable numbers pair: numbers (m, n) such that tsigma(m) = tsigma(n) = m + n, where tsigma(n) is the sum of the tri-unitary divisors of n (A324706).

Original entry on oeis.org

126, 846, 1260, 8460, 11760, 10856, 14595, 17700, 49308, 83142, 62700, 71145, 73962, 83904, 107550, 88730, 131100, 168730, 149952, 196650, 203432, 306612, 365700, 399592, 419256, 548550, 721962, 669688, 831420, 686072, 691256, 712216, 652664, 661824, 827700
Offset: 1

Views

Author

Amiram Eldar, Mar 11 2019

Keywords

Comments

The terms are ordered according to their lesser counterparts (A324708).

Examples

			126 is in the sequence since it is the larger of the amicable pair (114, 126): tsigma(114) = tsigma(126) = 114 + 126.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 3, (p^4-1)/(p-1), If[e==6, (p^8-1)/(p^2-1), p^e+1]]; tsigma[1]=1; tsigma[n_]:= Times @@ f @@@ FactorInteger[n]; s[n_] := tsigma[n] - n; seq={}; Do[m=s[n]; If[m>n && s[m]==n, AppendTo[seq, m]] ,{n,1,700000}]; seq

A322541 Lesser of semi-unitary amicable numbers pair: numbers (m, n) such that susigma(m) = susigma(n) = m + n, where susigma(n) is the sum of the semi-unitary divisors of n (A322485).

Original entry on oeis.org

114, 366, 1140, 3660, 3864, 5016, 11040, 15210, 16104, 16536, 18480, 44772, 57960, 67158, 68640, 68880, 142290, 142310, 155760, 196248, 198990, 240312, 248040, 275520, 278160, 308220, 322080, 326424, 339822, 348840, 352632, 366792, 462330, 485760, 607920
Offset: 1

Views

Author

Amiram Eldar, Dec 14 2018

Keywords

Examples

			114 is in the sequence since it is the lesser of the amicable pair (114, 126): susigma(114) = susigma(126) = 114 + 126.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^Floor[(e + 1)/2] - 1)/(p - 1) + p^e; s[n_] := If[n == 1, 1, Times @@ (f @@@ FactorInteger[n])] - n; seq = {}; Do[n = s[m]; If[n > m && s[n] == m, AppendTo[seq, m]], {m, 1, 1000000}]; seq
  • PARI
    susigma(n) = {my(f = factor(n)); for (k=1, #f~, my(p=f[k, 1], e=f[k, 2]); f[k, 1] = (p^((e+1)\2) - 1)/(p-1) + p^e; f[k, 2] = 1; ); factorback(f); } \\ A322485
    isok(n) = my(m=susigma(n)-n); (m > n) && (susigma(m) == n + m); \\ Michel Marcus, Dec 15 2018

A348344 Larger member of a noninfinitary amicable pair: numbers (k, m) such that nisigma(k) = m and nisigma(m) = k, where nisigma(k) is the sum of the noninfinitary divisors of k (A348271).

Original entry on oeis.org

448, 2032, 8128, 7168, 24384, 41984, 130048, 41940480, 102222432, 221316608, 34359738352
Offset: 1

Views

Author

Amiram Eldar, Oct 13 2021

Keywords

Comments

The terms are ordered according to their smaller counterparts (A348343).

Examples

			448 is a term since A348271(448) = 336 and A348271(336) = 448.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ f @@@ FactorInteger[n]; s[n_] := DivisorSigma[1,n] - isigma[n]; seq={}; Do[m=s[n]; If[m>n && s[m]==n, AppendTo[seq, m]], {n,1,10^4}]; seq

A357496 Greater of a pair of amicable numbers k < m such that s(k) = m and s(m) = k, where s(k) = A162296(k) - k is the sum of aliquot divisors of k that have a square factor.

Original entry on oeis.org

1136, 11696, 22256, 25472, 43424, 73664, 131355, 304336, 267968, 492608, 612704, 674920, 640305, 788697, 691292, 705344, 723392, 813728, 809776, 1117395, 1258335, 1559696, 1518570, 1598368, 1821376, 2218250, 2058944, 2678752, 2744288, 2765024, 2848864, 2610656, 3134224
Offset: 1

Views

Author

Amiram Eldar, Oct 01 2022

Keywords

Comments

Analogous to amicable numbers (A002025 and A002046) with nonsquarefree divisors.
The terms are ordered according to their lesser counterparts (A357495).
Both members of each pair are necessarily nonsquarefree numbers.

Examples

			1136 is a term since s(1136) = 880 and s(880) = 1136.
		

Crossrefs

Programs

  • Mathematica
    s[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; Times @@ ((p^(e + 1) - 1)/(p - 1)) - Times @@ (p + 1) - n]; seq = {}; Do[m = s[n]; If[m > n && s[m] == n, AppendTo[seq, m]], {n, 2, 3*10^6}]; seq

A371420 Greater member of Carmichael's variant of amicable pair: numbers k < m such that s(k) = m and s(m) = k, where s(k) = A371418(k).

Original entry on oeis.org

14, 62, 124, 189, 254, 508, 2032, 16382, 32764, 131056, 262142, 524284, 524224, 1048574, 2097148, 2097136, 8388592, 8388544, 33554368, 536866816, 2147479552, 4294967294, 8589934588, 34359738352, 34359672832, 137438953408
Offset: 1

Views

Author

Amiram Eldar, Mar 23 2024

Keywords

Comments

The terms are ordered according to their lesser counterparts (A371419).

Examples

			14 is a term since A371418(14) = 12 < 14, and A371418(12) = 14.
		

Crossrefs

Programs

  • Mathematica
    r[n_] := n/FactorInteger[n][[1, 1]]; s[n_] := r[DivisorSigma[1, n]]; seq = {}; Do[m = s[n]; If[m > n && s[m] == n, AppendTo[seq, m]], {n, 1, 10^6}]; seq
  • PARI
    f(n) = {my(s = sigma(n)); if(s == 1, 1, s/factor(s)[1, 1]);}
    lista(nmax) = {my(m); for(n = 1, nmax, m = f(n); if(m > n && f(m) == n, print1(m, ", ")));}

A348603 Larger member of a nonexponential amicable pair: numbers (k, m) such that nesigma(k) = m and nesigma(m) = k, where nesigma(k) is the sum of the nonexponential divisors of k (A160135).

Original entry on oeis.org

204, 19332, 168730, 1099390, 1292570, 1598470, 2062570, 2429030, 3077354, 3903012, 4488910, 6135962, 5504110, 5812130, 7158710, 8221598, 9627915, 10893230, 10043690, 11049730, 10273670, 18087818, 19150222, 17578785, 23030090, 32174506, 35997346, 40117714, 39944086
Offset: 1

Views

Author

Amiram Eldar, Oct 25 2021

Keywords

Comments

The terms are ordered according to their smaller counterparts (A348602).

Examples

			204 is a term since A160135(204) = 198 and A160135(198) = 204.
		

Crossrefs

Programs

  • Mathematica
    esigma[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; s[n_] := DivisorSigma[1, n] - esigma[n]; seq = {}; Do[m = s[n]; If[m > n && s[m] == n, AppendTo[seq, m]], {n, 1, 1.7*10^6}]; seq
Showing 1-6 of 6 results.