A322553 Odd numbers whose product of prime indices is a prime power.
1, 3, 5, 7, 9, 11, 17, 19, 21, 23, 25, 27, 31, 41, 49, 53, 57, 59, 63, 67, 81, 83, 97, 103, 109, 115, 121, 125, 127, 131, 133, 147, 157, 159, 171, 179, 189, 191, 211, 227, 241, 243, 277, 283, 289, 311, 331, 343, 353, 361, 367, 371, 393, 399, 401, 419, 431, 441
Offset: 1
Keywords
Examples
The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}. The sequence of multiset partitions whose MM-numbers belong to this sequence begins: 1: {} 3: {{1}} 5: {{2}} 7: {{1,1}} 9: {{1},{1}} 11: {{3}} 17: {{4}} 19: {{1,1,1}} 21: {{1},{1,1}} 23: {{2,2}} 25: {{2},{2}} 27: {{1},{1},{1}} 31: {{5}} 41: {{6}} 49: {{1,1},{1,1}} 53: {{1,1,1,1}} 57: {{1},{1,1,1}} 59: {{7}} 63: {{1},{1},{1,1}} 67: {{8}} 81: {{1},{1},{1},{1}} 83: {{9}} 97: {{3,3}}
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[1,100,2],#==1||PrimePowerQ[Times@@primeMS[#]]&]
-
PARI
isok(n) = {if (n % 2, my(f = factor(n), pk = prod(k=1, #f~, primepi(f[k,1]))); (pk == 1) || isprimepower(pk););} \\ Michel Marcus, Dec 16 2018
Comments