cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322583 a(n) is the number of factorizations of n into factorial numbers larger than one; a(1) = 1.

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 25 2018

Keywords

Comments

Values 1..7 occur for the first time at n = 1, 24, 576, 13824, 69120, 414720, 1658880.
In range 1..69120 differs from A034876 only at positions n = 1, 2, 9, 10 and 16.

Examples

			a(4) = 1 because 4 = 2! * 2!.
a(24) = 2 because 24 = 4! = 3! * 2! * 2!.
a(576) = 3 because 576 = 4! * 4! = 4! * 3! * 2! * 2! = (3!)^2 * (2!)^4.
a(13824) = 4 because 13824 = (4!)^3 = (4!)^2 * 3! * (2!)^2 = 4! * (3!)^2 * (2!)^4 = (3!)^3 * (2!)^6.
a(69120) = 5 because 69120 = 6! * 4! * 2! * 2! = 6! * 3! * 2! * 2! * 2! * 2! = 5! * 3! * 3! * 2! * 2! * 2! * 2! = 5! * 4! * 4! = 5! * 4! * 3! * 2! * 2!. Note that 69120 < 24^4 = 331776.
		

Crossrefs

Cf. A000142, A001013 (positions of nonzero terms), A009968, A034876, A034968.

Programs

  • PARI
    A322583(n, m=n) = if(1==n, 1, my(s=0); for(i=2, oo, my(f=i!); if(f>m, return(s)); if(!(n%f), s += A322583(n/f, f))));
    
  • PARI
    A034968(n) = { my(s=0, b=2, d); while(n, d = (n%b); s += d; n = (n-d)/b; b++); (s); };
    A322583(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m)&&(1==A034968(d)), s += A322583(n/d, d))); (s));

Formula

a(24^n) = a(A009968(n)) = n+1.