cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A115627 Irregular triangle read by rows: T(n,k) = multiplicity of prime(k) as a divisor of n!.

Original entry on oeis.org

1, 1, 1, 3, 1, 3, 1, 1, 4, 2, 1, 4, 2, 1, 1, 7, 2, 1, 1, 7, 4, 1, 1, 8, 4, 2, 1, 8, 4, 2, 1, 1, 10, 5, 2, 1, 1, 10, 5, 2, 1, 1, 1, 11, 5, 2, 2, 1, 1, 11, 6, 3, 2, 1, 1, 15, 6, 3, 2, 1, 1, 15, 6, 3, 2, 1, 1, 1, 16, 8, 3, 2, 1, 1, 1, 16, 8, 3, 2, 1, 1, 1, 1
Offset: 2

Views

Author

Keywords

Comments

The factorization of n! is n! = 2^T(n,1)*3^T(n,2)*...*p_(pi(n))^T(n,pi(n)) where p_k = k-th prime, pi(n) = A000720(n).
Nonzero terms of A085604; T(n,k) = A085604(n,k), k = 1..A000720(n). - Reinhard Zumkeller, Nov 01 2013
For n=2, 3, 4 and 5, all terms of the n-th row are odd. Are there other such rows? - Michel Marcus, Nov 11 2018
From Gus Wiseman, May 15 2019: (Start)
Differences between successive rows are A067255, so row n is the sum of the first n row-vectors of A067255 (padded with zeros on the right so that all n row-vectors have length A000720(n)). For example, the first 10 rows of A067255 are
{}
1
0 1
2 0
0 0 1
1 1 0
0 0 0 1
3 0 0 0
0 2 0 0
1 0 1 0
with column sums (8,4,2,1), which is row 10.
(End)
For all prime p > 7, 3*p > 2*nextprime(p), so for any n > 21 there will always be a prime p dividing n! with exponent 2 and there are no further rows with all entries odd. - Charlie Neder, Jun 03 2019

Examples

			From _Gus Wiseman_, May 09 2019: (Start)
Triangle begins:
   1
   1  1
   3  1
   3  1  1
   4  2  1
   4  2  1  1
   7  2  1  1
   7  4  1  1
   8  4  2  1
   8  4  2  1  1
  10  5  2  1  1
  10  5  2  1  1  1
  11  5  2  2  1  1
  11  6  3  2  1  1
  15  6  3  2  1  1
  15  6  3  2  1  1  1
  16  8  3  2  1  1  1
  16  8  3  2  1  1  1  1
  18  8  4  2  1  1  1  1
(End)
m such that 5^m||101!: floor(log(101)/log(5)) = 2 terms. floor(101/5) = 20. floor(20/5) = 4. So m = u_1 + u_2 = 20 + 4 = 24. - _David A. Corneth_, Jun 22 2014
		

Crossrefs

Row lengths are A000720.
Row-sums are A022559.
Row-products are A135291.
Row maxima are A011371.

Programs

  • Haskell
    a115627 n k = a115627_tabf !! (n-2) !! (k-1)
    a115627_row = map a100995 . a141809_row . a000142
    a115627_tabf = map a115627_row [2..]
    -- Reinhard Zumkeller, Nov 01 2013
    
  • Maple
    A115627 := proc(n,k) local d,p; p := ithprime(k) ; n-add(d,d=convert(n,base,p)) ; %/(p-1) ; end proc: # R. J. Mathar, Oct 29 2010
  • Mathematica
    Flatten[Table[Transpose[FactorInteger[n!]][[2]], {n, 2, 20}]] (* T. D. Noe, Apr 10 2012 *)
    T[n_, k_] := Module[{p, jm}, p = Prime[k]; jm = Floor[Log[p, n]]; Sum[Floor[n/p^j], {j, 1, jm}]]; Table[Table[T[n, k], {k, 1, PrimePi[n]}], {n, 2, 20}] // Flatten (* Jean-François Alcover, Feb 23 2015 *)
  • PARI
    a(n)=my(i=2);while(n-primepi(i)>1,n-=primepi(i);i++);p=prime(n-1);sum(j=1,log(i)\log(p),i\=p) \\ David A. Corneth, Jun 21 2014

Formula

T(n,k) = Sum_{i=1..inf} floor(n/(p_k)^i). (Although stated as an infinite sum, only finitely many terms are nonzero.)
T(n,k) = Sum_{i=1..floor(log(n)/log(p_k))} floor(u_i) where u_0 = n and u_(i+1) = floor((u_i)/p_k). - David A. Corneth, Jun 22 2014

A317829 Number of set partitions of multiset {1, 2, 2, 3, 3, 3, ..., n X n}.

Original entry on oeis.org

1, 1, 4, 52, 2776, 695541, 927908528, 7303437156115, 371421772559819369, 132348505150329265211927, 355539706668772869353964510735, 7698296698535929906799439134946965681, 1428662247641961794158621629098030994429958386, 2405509035205023556420199819453960482395657232596725626
Offset: 0

Views

Author

Antti Karttunen, Aug 10 2018

Keywords

Comments

Number of factorizations of the superprimorial A006939(n) into factors > 1. - Gus Wiseman, Aug 21 2020

Examples

			For n = 2 we have a multiset {1, 2, 2} which can be partitioned as {{1}, {2}, {2}} or {{1, 2}, {2}} or {{1}, {2, 2}} or {{1, 2, 2}}, thus a(2) = 4.
		

Crossrefs

Subsequence of A317828.
A000142 counts submultisets of the same multiset.
A022915 counts permutations of the same multiset.
A337069 is the strict case.
A001055 counts factorizations.
A006939 lists superprimorials or Chernoff numbers.
A076716 counts factorizations of factorials.
A076954 can be used instead of A006939 (cf. A307895, A325337).
A181818 lists products of superprimorials, with complement A336426.

Programs

  • Maple
    g:= proc(n, k) option remember; uses numtheory; `if`(n>k, 0, 1)+
         `if`(isprime(n), 0, add(`if`(d>k or max(factorset(n/d))>d, 0,
            g(n/d, d)), d=divisors(n) minus {1, n}))
        end:
    a:= n-> g(mul(ithprime(i)^i, i=1..n)$2):
    seq(a(n), n=0..5);  # Alois P. Heinz, Jul 26 2020
  • Mathematica
    chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[facs[chern[n]]],{n,3}] (* Gus Wiseman, Aug 21 2020 *)
  • PARI
    \\ See A318284 for count.
    a(n) = {if(n==0, 1, count(vector(n,i,i)))} \\ Andrew Howroyd, Aug 31 2020

Formula

a(n) = A317826(A033312(n+1)) = A317826((n+1)!-1) = A001055(A076954(n)).
a(n) = A001055(A006939(n)). - Gus Wiseman, Aug 21 2020
a(n) = A318284(A002110(n)). - Andrew Howroyd, Aug 31 2020

Extensions

a(0)=1 prepended and a(7) added by Alois P. Heinz, Jul 26 2020
a(8)-a(13) from Andrew Howroyd, Aug 31 2020

A325616 Triangle read by rows where T(n,k) is the number of length-k integer partitions of n into factorial numbers.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 2, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 2, 2, 1
Offset: 0

Views

Author

Gus Wiseman, May 12 2019

Keywords

Examples

			Triangle begins:
  1
  0 1
  0 1 1
  0 0 1 1
  0 0 1 1 1
  0 0 0 1 1 1
  0 1 0 1 1 1 1
  0 0 1 0 1 1 1 1
  0 0 1 1 1 1 1 1 1
  0 0 0 1 1 1 1 1 1 1
  0 0 0 1 1 2 1 1 1 1 1
  0 0 0 0 1 1 2 1 1 1 1 1
  0 0 1 0 1 1 2 2 1 1 1 1 1
  0 0 0 1 0 1 1 2 2 1 1 1 1 1
  0 0 0 1 1 1 1 2 2 2 1 1 1 1 1
  0 0 0 0 1 1 1 1 2 2 2 1 1 1 1 1
  0 0 0 0 1 1 2 1 2 2 2 2 1 1 1 1 1
  0 0 0 0 0 1 1 2 1 2 2 2 2 1 1 1 1 1
  0 0 0 1 0 1 1 2 2 2 2 2 2 2 1 1 1 1 1
  0 0 0 0 1 0 1 1 2 2 2 2 2 2 2 1 1 1 1 1
  0 0 0 0 1 1 1 1 2 2 3 2 2 2 2 2 1 1 1 1 1
Row n = 12 counts the following partitions:
  (66)
  (6222)
  (62211)
  (222222) (621111)
  (2222211) (6111111)
  (22221111)
  (222111111)
  (2211111111)
  (21111111111)
  (111111111111)
		

Crossrefs

Row sums are A064986.
Cf. A008284.
Reciprocal factorial sum: A325618, A325619, A325620, A325622.

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1-y*x^(i!)),{i,1,n}],{x,0,n},{y,0,k}],{n,0,15},{k,0,n}]

Formula

T(n,k) is the coefficient of x^n * y^k in the expansion of Product_{i > 0} 1/(1 - y * x^(i!)).

A325509 Number of factorizations of n! into factorial numbers > 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 3, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Gus Wiseman, May 08 2019

Keywords

Examples

			n = 10:
  (6*120*5040)
  (720*5040)
  (3628800)
n = 16:
  (2*2*2*2*1307674368000)
  (2*120*87178291200)
  (20922789888000)
n = 24:
  (2*2*6*25852016738884976640000)
  (24*25852016738884976640000)
  (620448401733239439360000)
		

Crossrefs

Programs

  • Mathematica
    facs[n_,u_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d,u],Min@@#>=d&]],{d,Intersection[u,Rest[Divisors[n]]]}]];
    Table[Length[facs[n!,Rest[Array[#!&,n]]]],{n,15}]

Formula

a(n) = 1 + A034876(n).

Extensions

More terms from Alois P. Heinz, May 08 2019

A034876 Number of ways to write n! as a product of smaller factorials each greater than 1.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 1, 2, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Keywords

Comments

By definition, a(n) > 0 if and only if n is a member of A034878. If n > 2, then a(n!) > max(a(n), a(n!-1)), as (n!)! = n!*(n!-1)!. Similarly, a(A001013(n)) > 0 for n > 2. Clearly a(n)=0 if n is a prime A000040. So a(n+1)=1 if n=2^p-1 is a Mersenne prime A000668, as (n+1)!=(2!)^p*n! and n is prime. - Jonathan Sondow, Dec 15 2004
From Antti Karttunen, Dec 25 2018: (Start)
If n! = a! * x! * y! * ... * z!, with a > x >= y >= z, then A006530(n!) = A006530(a!) > A006530(x!). This follows because all rows in A115627 end with 1, that is, because all factorials >= 2 are in A102750.
If all the two-term solutions are of the form n! = a! * x! = b! * y! = ... = c! * z! (that is, all are products of two factorials larger than one), with a > x, b > y, ..., c > z, then a(n) = (a(x)+1 + a(y)+1 + ... + a(z)+1).
Values 0..5 occur for the first time at n = 1, 4, 10, 576, 13824, 69120.
In range 1..69120 differs from A322583 only at positions n = 1, 2, 9, 10 and 16.
(End)

Examples

			a(10) = 2 because 10! = 3! * 5! * 7! = 6! * 7! are the only two ways to write 10! as a product of smaller factorials > 1.
From _Antti Karttunen_, Dec 25 2018: (Start)
a(8) = 1 because 8! = 7! * (2!)^3.
a(9) = 1 because 9! = 7! * 3! * 3! * 2!.
a(16) = 2 because 16! = 15! * (2!)^4 = 14! * 5! * 2!.
a(144) = 2 because 144! = 143! * 4! * 3! = 143! * 3! * 3! * 2! * 2!.
a(576) = 3 because 576! = 575! * 4! * 4! = 575! * 4! * 3! * 2! * 2! = 575! * 3! * 3! * 2! * 2! * 2! * 2!.
a(720) = 2 because 720! = 719! * 6! = 719! * 5! * 3!.
a(3456) = 3 because 3456! = 3455! * 4! * 4! * 3! = 3455! * 4! * 3! * 3! * 2! * 2! = 3455! * 3! * 3! * 3! * 2! * 2! * 2! * 2!.
(End)
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, B23.

Crossrefs

Programs

  • PARI
    A034876aux(n, m, p) = if(1==n, 1, my(s=0); forstep(i=m, p, -1, my(f=i!); if(!(n%f), s += A034876aux(n/f, i, 2))); (s));
    A034876(n) = if(1==n,0,A034876aux(n!, n-1, precprime(n))); \\ (Slow) - Antti Karttunen, Dec 24 2018
    
  • PARI
    A322583aux(n, m) = if(1==n, 1, my(s=0); for(i=2, oo, my(f=i!); if(f>m, return(s)); if(!(n%f), s += A322583aux(n/f, f))));
    memoA322583 = Map();
    A322583(n) = { my(c); if(mapisdefined(memoA322583,n,&c), c, c = A322583aux(n,n); mapput(memoA322583,n,c); (c)); };
    A034876aux(n, m, p) = if(1==n, 1, my(s=0); forstep(i=m, p, -1, my(f=i!); s += A322583(n/f)); (s));
    A034876(n) = if(1==n, 0, A034876aux(n!, n-1, precprime(n))); \\ Antti Karttunen, Dec 25 2018

Formula

a(1) = 0; for n > 1, a(n) = Sum_{x=A007917(n)..n-1} A322583(n!/x!) when n is a composite, and a(n) = 0 when n is a prime. - Antti Karttunen, Dec 25 2018

Extensions

Corrected by Jonathan Sondow, Dec 18 2004

A336496 Products of superfactorials (A000178).

Original entry on oeis.org

1, 2, 4, 8, 12, 16, 24, 32, 48, 64, 96, 128, 144, 192, 256, 288, 384, 512, 576, 768, 1024, 1152, 1536, 1728, 2048, 2304, 3072, 3456, 4096, 4608, 6144, 6912, 8192, 9216, 12288, 13824, 16384, 18432, 20736, 24576, 27648, 32768, 34560, 36864, 41472, 49152, 55296
Offset: 1

Views

Author

Gus Wiseman, Aug 03 2020

Keywords

Comments

First differs from A317804 in having 34560, which is the first term with more than two distinct prime factors.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    4: {1,1}
    8: {1,1,1}
   12: {1,1,2}
   16: {1,1,1,1}
   24: {1,1,1,2}
   32: {1,1,1,1,1}
   48: {1,1,1,1,2}
   64: {1,1,1,1,1,1}
   96: {1,1,1,1,1,2}
  128: {1,1,1,1,1,1,1}
  144: {1,1,1,1,2,2}
  192: {1,1,1,1,1,1,2}
  256: {1,1,1,1,1,1,1,1}
  288: {1,1,1,1,1,2,2}
  384: {1,1,1,1,1,1,1,2}
  512: {1,1,1,1,1,1,1,1,1}
		

Crossrefs

A001013 is the version for factorials, with complement A093373.
A181818 is the version for superprimorials, with complement A336426.
A336497 is the complement.
A000178 lists superfactorials.
A001055 counts factorizations.
A006939 lists superprimorials or Chernoff numbers.
A049711 is the minimum prime multiplicity in A000178.
A174605 is the maximum prime multiplicity in A000178.
A303279 counts prime factors of superfactorials.
A317829 counts factorizations of superprimorials.
A322583 counts factorizations into factorials.
A325509 counts factorizations of factorials into factorials.

Programs

  • Mathematica
    supfac[n_]:=Product[k!,{k,n}];
    facsusing[s_,n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsusing[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&]],{d,Select[s,Divisible[n,#]&]}]];
    Select[Range[1000],facsusing[Rest[Array[supfac,30]],#]!={}&]

A337069 Number of strict factorizations of the superprimorial A006939(n).

Original entry on oeis.org

1, 1, 3, 34, 1591, 360144, 442349835, 3255845551937, 156795416820025934, 53452979022001011490033, 138542156296245533221812350867, 2914321438328993304235584538307144802, 528454951438415221505169213611461783474874149, 873544754831735539240447436467067438924478174290477803
Offset: 0

Views

Author

Gus Wiseman, Aug 15 2020

Keywords

Comments

The n-th superprimorial is A006939(n) = Product_{i = 1..n} prime(i)^(n - i + 1).
Also the number of strict multiset partitions of {1,2,2,3,3,3,...,n}, a multiset with i copies of i for i = 1..n.

Examples

			The a(3) = 34 factorizations:
  2*3*4*15  2*3*60   2*180  360
  2*3*5*12  2*4*45   3*120
  2*3*6*10  2*5*36   4*90
  2*4*5*9   2*6*30   5*72
  3*4*5*6   2*9*20   6*60
            2*10*18  8*45
            2*12*15  9*40
            3*4*30   10*36
            3*5*24   12*30
            3*6*20   15*24
            3*8*15   18*20
            3*10*12
            4*5*18
            4*6*15
            4*9*10
            5*6*12
            5*8*9
		

Crossrefs

A022915 counts permutations of the same multiset.
A157612 is the version for factorials instead of superprimorials.
A317829 is the non-strict version.
A337072 is the non-strict version with squarefree factors.
A337073 is the case with squarefree factors.
A000217 counts prime factors (with multiplicity) of superprimorials.
A001055 counts factorizations.
A006939 lists superprimorials or Chernoff numbers.
A045778 counts strict factorizations.
A076954 can be used instead of A006939 (cf. A307895, A325337).
A181818 lists products of superprimorials, with complement A336426.
A322583 counts factorizations into factorials.

Programs

  • Mathematica
    chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}];
    stfa[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[stfa[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[stfa[chern[n]]],{n,0,3}]
  • PARI
    \\ See A318286 for count.
    a(n) = {if(n==0, 1, count(vector(n, i, i)))} \\ Andrew Howroyd, Sep 01 2020

Formula

a(n) = A045778(A006939(n)).
a(n) = A318286(A002110(n)). - Andrew Howroyd, Sep 01 2020

Extensions

a(7)-a(13) from Andrew Howroyd, Sep 01 2020

A325709 Replace k with k! in the prime indices of n.

Original entry on oeis.org

1, 2, 3, 4, 13, 6, 89, 8, 9, 26, 659, 12, 5443, 178, 39, 16, 49033, 18, 484037, 52, 267, 1318, 5222429, 24, 169, 10886, 27, 356, 61194647, 78, 774825383, 32, 1977, 98066, 1157, 36, 10552185239, 968074, 16329, 104, 153903050137, 534, 2394322471421, 2636, 117
Offset: 1

Views

Author

Gus Wiseman, May 19 2019

Keywords

Comments

The union is A308299.

Examples

			The sequence of terms together with their prime indices begins:
       1: {}
       2: {1}
       3: {2}
       4: {1,1}
      13: {6}
       6: {1,2}
      89: {24}
       8: {1,1,1}
       9: {2,2}
      26: {1,6}
     659: {120}
      12: {1,1,2}
    5443: {720}
     178: {1,24}
      39: {2,6}
      16: {1,1,1,1}
   49033: {5040}
      18: {1,2,2}
  484037: {40320}
      52: {1,1,6}.
		

Crossrefs

Programs

  • Mathematica
    Table[Times@@Prime/@(If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]!),{n,20}]
  • PARI
    A325709(n) = { my(f=factor(n)); prod(i=1,#f~,prime(primepi(f[i, 1])!)^f[i, 2]); }; \\ Antti Karttunen, Nov 17 2019
    
  • Python
    from math import prod, factorial
    from sympy import prime, primepi, factorint
    def A325709(n): return prod(prime(factorial(primepi(p)))**e for p, e in factorint(n).items()) # Chai Wah Wu, Dec 26 2022

Formula

Completely multiplicative with a(prime(n)) = prime(n!).
Sum_{n>=1} 1/a(n) = 1/Product_{k>=1} (1 - 1/prime(k!)) = 3.292606708493... . - Amiram Eldar, Dec 09 2022

Extensions

Keyword:mult added by Antti Karttunen, Nov 17 2019

A336497 Numbers that cannot be written as a product of superfactorials A000178.

Original entry on oeis.org

3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76
Offset: 1

Views

Author

Gus Wiseman, Aug 03 2020

Keywords

Comments

First differs from A336426 in having 360.

Examples

			The sequence of terms together with their prime indices begins:
     3: {2}        22: {1,5}        39: {2,6}
     5: {3}        23: {9}          40: {1,1,1,3}
     6: {1,2}      25: {3,3}        41: {13}
     7: {4}        26: {1,6}        42: {1,2,4}
     9: {2,2}      27: {2,2,2}      43: {14}
    10: {1,3}      28: {1,1,4}      44: {1,1,5}
    11: {5}        29: {10}         45: {2,2,3}
    13: {6}        30: {1,2,3}      46: {1,9}
    14: {1,4}      31: {11}         47: {15}
    15: {2,3}      33: {2,5}        49: {4,4}
    17: {7}        34: {1,7}        50: {1,3,3}
    18: {1,2,2}    35: {3,4}        51: {2,7}
    19: {8}        36: {1,1,2,2}    52: {1,1,6}
    20: {1,1,3}    37: {12}         53: {16}
    21: {2,4}      38: {1,8}        54: {1,2,2,2}
		

Crossrefs

A093373 is the version for factorials, with complement A001013.
A336426 is the version for superprimorials, with complement A181818.
A336496 is the complement.
A000178 lists superfactorials.
A001055 counts factorizations.
A006939 lists superprimorials or Chernoff numbers.
A049711 is the minimum prime multiplicity in A000178(n).
A174605 is the maximum prime multiplicity in A000178(n).
A303279 counts prime factors (with multiplicity) of superprimorials.
A317829 counts factorizations of superprimorials.
A322583 counts factorizations into factorials.
A325509 counts factorizations of factorials into factorials.

Programs

  • Mathematica
    supfac[n_]:=Product[k!,{k,n}];
    facsusing[s_,n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsusing[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&]],{d,Select[s,Divisible[n,#]&]}]];
    Select[Range[100],facsusing[Rest[Array[supfac,30]],#]=={}&]

A308299 Numbers whose prime indices are factorial numbers.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18, 24, 26, 27, 32, 36, 39, 48, 52, 54, 64, 72, 78, 81, 89, 96, 104, 108, 117, 128, 144, 156, 162, 169, 178, 192, 208, 216, 234, 243, 256, 267, 288, 312, 324, 338, 351, 356, 384, 416, 432, 468, 486, 507, 512, 534, 576, 624, 648
Offset: 1

Views

Author

Gus Wiseman, May 19 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions using factorial numbers. The enumeration of these partitions by sum is given by A064986.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    6: {1,2}
    8: {1,1,1}
    9: {2,2}
   12: {1,1,2}
   13: {6}
   16: {1,1,1,1}
   18: {1,2,2}
   24: {1,1,1,2}
   26: {1,6}
   27: {2,2,2}
   32: {1,1,1,1,1}
   36: {1,1,2,2}
   39: {2,6}
   48: {1,1,1,1,2}
   52: {1,1,6}
   54: {1,2,2,2}
		

Crossrefs

Programs

  • Mathematica
    nn=5;
    facts=Array[Factorial,nn];
    Select[Range[Prime[Max@@facts]],SubsetQ[facts,PrimePi/@First/@FactorInteger[#]]&]

Formula

Sum_{n>=1} 1/a(n) = 1/Product_{k>=1} (1 - 1/prime(k!)) = 3.292606708493... . - Amiram Eldar, Dec 03 2022
Showing 1-10 of 11 results. Next