cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A317829 Number of set partitions of multiset {1, 2, 2, 3, 3, 3, ..., n X n}.

Original entry on oeis.org

1, 1, 4, 52, 2776, 695541, 927908528, 7303437156115, 371421772559819369, 132348505150329265211927, 355539706668772869353964510735, 7698296698535929906799439134946965681, 1428662247641961794158621629098030994429958386, 2405509035205023556420199819453960482395657232596725626
Offset: 0

Views

Author

Antti Karttunen, Aug 10 2018

Keywords

Comments

Number of factorizations of the superprimorial A006939(n) into factors > 1. - Gus Wiseman, Aug 21 2020

Examples

			For n = 2 we have a multiset {1, 2, 2} which can be partitioned as {{1}, {2}, {2}} or {{1, 2}, {2}} or {{1}, {2, 2}} or {{1, 2, 2}}, thus a(2) = 4.
		

Crossrefs

Subsequence of A317828.
A000142 counts submultisets of the same multiset.
A022915 counts permutations of the same multiset.
A337069 is the strict case.
A001055 counts factorizations.
A006939 lists superprimorials or Chernoff numbers.
A076716 counts factorizations of factorials.
A076954 can be used instead of A006939 (cf. A307895, A325337).
A181818 lists products of superprimorials, with complement A336426.

Programs

  • Maple
    g:= proc(n, k) option remember; uses numtheory; `if`(n>k, 0, 1)+
         `if`(isprime(n), 0, add(`if`(d>k or max(factorset(n/d))>d, 0,
            g(n/d, d)), d=divisors(n) minus {1, n}))
        end:
    a:= n-> g(mul(ithprime(i)^i, i=1..n)$2):
    seq(a(n), n=0..5);  # Alois P. Heinz, Jul 26 2020
  • Mathematica
    chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[facs[chern[n]]],{n,3}] (* Gus Wiseman, Aug 21 2020 *)
  • PARI
    \\ See A318284 for count.
    a(n) = {if(n==0, 1, count(vector(n,i,i)))} \\ Andrew Howroyd, Aug 31 2020

Formula

a(n) = A317826(A033312(n+1)) = A317826((n+1)!-1) = A001055(A076954(n)).
a(n) = A001055(A006939(n)). - Gus Wiseman, Aug 21 2020
a(n) = A318284(A002110(n)). - Andrew Howroyd, Aug 31 2020

Extensions

a(0)=1 prepended and a(7) added by Alois P. Heinz, Jul 26 2020
a(8)-a(13) from Andrew Howroyd, Aug 31 2020

A336941 Number of strict chains of divisors starting with the superprimorial A006939(n) and ending with 1.

Original entry on oeis.org

1, 1, 8, 604, 691968, 16359233536, 10083474928244288, 195661337707783118840768, 139988400203593571474134024847360, 4231553868972506381329450624389969130848256, 6090860257621637852755610879241895108657182173073604608, 464479854191019594417264488167571483344961210693790188774166838214656
Offset: 0

Views

Author

Gus Wiseman, Aug 13 2020

Keywords

Examples

			The a(2) = 8 chains:
  12/1
  12/2/1
  12/3/1
  12/4/1
  12/6/1
  12/4/2/1
  12/6/2/1
  12/6/3/1
		

Crossrefs

A022915 is the maximal case.
A076954 can be used instead of A006939.
A336571 is the case with distinct prime multiplicities.
A336942 is the case using members of A130091.
A337070 is the version ending with any divisor of A006939(n).
A000005 counts divisors.
A074206 counts chains of divisors from n to 1.
A006939 lists superprimorials or Chernoff numbers.
A067824 counts divisor chains starting with n.
A181818 gives products of superprimorials, with complement A336426.
A253249 counts chains of divisors.
A317829 counts factorizations of superprimorials.
A336423 counts chains using A130091, with maximal case A336569.

Programs

  • Mathematica
    chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}];
    chns[n_]:=If[n==1,1,Sum[chns[d],{d,Most[Divisors[n]]}]];
    Table[chns[chern[n]],{n,0,3}]
  • PARI
    a(n)={my(sig=vector(n,i,i), m=vecsum(sig)); sum(k=0, m, prod(i=1, #sig, binomial(sig[i]+k-1, k-1))*sum(r=k, m, binomial(r,k)*(-1)^(r-k)))} \\ Andrew Howroyd, Aug 30 2020

Formula

a(n) = A337070(n)/2 for n > 0.
a(n) = A074206(A006939(n)).

Extensions

Terms a(8) and beyond from Andrew Howroyd, Aug 30 2020

A337072 Number of factorizations of the superprimorial A006939(n) into squarefree numbers > 1.

Original entry on oeis.org

1, 1, 2, 10, 141, 6769, 1298995, 1148840085, 5307091649182, 143026276277298216, 24801104674619158730662, 30190572492693121799801655311, 278937095127086600900558327826721594
Offset: 0

Views

Author

Gus Wiseman, Aug 15 2020

Keywords

Comments

The n-th superprimorial is A006939(n) = Product_{i = 1..n} prime(i)^(n - i + 1), which has n! divisors.
Also the number of set multipartitions (multisets of sets) of the multiset of prime factors of the superprimorial A006939(n).

Examples

			The a(1) = 1 through a(3) = 10 factorizations:
    2  2*6    2*6*30
       2*2*3  6*6*10
              2*5*6*6
              2*2*3*30
              2*2*6*15
              2*3*6*10
              2*2*3*5*6
              2*2*2*3*15
              2*2*3*3*10
              2*2*2*3*3*5
The a(1) = 1 through a(3) = 10 set multipartitions:
     {1}  {1}{12}    {1}{12}{123}
          {1}{1}{2}  {12}{12}{13}
                     {1}{1}{12}{23}
                     {1}{1}{2}{123}
                     {1}{2}{12}{13}
                     {1}{3}{12}{12}
                     {1}{1}{1}{2}{23}
                     {1}{1}{2}{2}{13}
                     {1}{1}{2}{3}{12}
                     {1}{1}{1}{2}{2}{3}
		

Crossrefs

A000142 counts divisors of superprimorials.
A022915 counts permutations of the same multiset.
A103774 is the version for factorials instead of superprimorials.
A337073 is the strict case (strict factorizations into squarefree numbers).
A001055 counts factorizations.
A006939 lists superprimorials or Chernoff numbers.
A045778 counts strict factorizations.
A050320 counts factorizations into squarefree numbers.
A050326 counts strict factorizations into squarefree numbers.
A076954 can be used instead of A006939 (cf. A307895, A325337).
A089259 counts set multipartitions of integer partitions.
A116540 counts normal set multipartitions.
A317829 counts factorizations of superprimorials.
A337069 counts strict factorizations of superprimorials.

Programs

  • Mathematica
    chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}];
    facsqf[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsqf[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
    Table[Length[facsqf[chern[n]]],{n,0,3}]
  • PARI
    \\ See A318360 for count.
    a(n) = {if(n==0, 1, count(vector(n,i,i)))} \\ Andrew Howroyd, Aug 31 2020

Formula

a(n) = A050320(A006939(n)).
a(n) = A318360(A002110(n)). - Andrew Howroyd, Aug 31 2020

Extensions

a(7)-a(12) from Andrew Howroyd, Aug 31 2020

A337073 Number of strict factorizations of the superprimorial A006939(n) into squarefree numbers > 1.

Original entry on oeis.org

1, 1, 1, 2, 14, 422, 59433, 43181280, 178025660042, 4550598470020490, 782250333882971717562, 974196106965358319940100513, 9412280190038329162111356578977100, 751537739224674099813783040471383322758327
Offset: 0

Views

Author

Gus Wiseman, Aug 15 2020

Keywords

Comments

The n-th superprimorial is A006939(n) = Product_{i = 1..n} prime(i)^(n - i + 1). It has n! divisors.
Also the number of strict set multipartitions (sets of sets) of the multiset of prime factors of the superprimorial A006939(n).

Examples

			The a(1) = 1 through a(3) = 10 factorizations:
    2  2*6  2*6*30    2*6*30*210
            2*3*6*10  6*10*30*42
                      2*3*6*30*70
                      2*5*6*30*42
                      2*3*10*30*42
                      2*3*6*10*210
                      2*6*10*15*42
                      2*6*10*21*30
                      2*6*14*15*30
                      3*6*10*14*30
                      2*3*5*6*10*42
                      2*3*5*6*14*30
                      2*3*6*7*10*30
                      2*3*6*10*14*15
The a(1) = 1 through a(3) = 14 set multipartitions:
    {1}  {1}{12}  {1}{12}{123}    {1}{12}{123}{1234}
                  {1}{2}{12}{13}  {12}{13}{123}{124}
                                  {1}{12}{13}{23}{124}
                                  {1}{12}{13}{24}{123}
                                  {1}{12}{14}{23}{123}
                                  {1}{2}{12}{123}{134}
                                  {1}{2}{12}{13}{1234}
                                  {1}{2}{13}{123}{124}
                                  {1}{3}{12}{123}{124}
                                  {2}{12}{13}{14}{123}
                                  {1}{2}{12}{13}{14}{23}
                                  {1}{2}{12}{4}{13}{123}
                                  {1}{2}{3}{12}{13}{124}
                                  {1}{2}{3}{12}{14}{123}
		

Crossrefs

A000142 counts divisors of superprimorials.
A022915 counts permutations of the same multiset.
A103775 is the version for factorials instead of superprimorials.
A337072 is the non-strict version.
A001055 counts factorizations.
A006939 lists superprimorials or Chernoff numbers.
A045778 counts strict factorizations.
A050320 counts factorizations into squarefree numbers.
A050326 counts strict factorizations into squarefree numbers.
A050342 counts strict set multipartitions of integer partitions.
A076954 can be used instead of A006939 (cf. A307895, A325337).
A283877 counts non-isomorphic strict set multipartitions.
A317829 counts factorizations of superprimorials.
A337069 counts strict factorizations of superprimorials.

Programs

  • Mathematica
    chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}];
    ystfac[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[ystfac[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
    Table[Length[ystfac[chern[n]]],{n,0,4}]
  • PARI
    \\ See A318361 for count.
    a(n) = {if(n==0, 1, count(vector(n, i, i)))} \\ Andrew Howroyd, Sep 01 2020

Formula

a(n) = A050326(A006939(n)).
a(n) = A318361(A002110(n)). - Andrew Howroyd, Sep 01 2020

Extensions

a(7)-a(13) from Andrew Howroyd, Sep 01 2020

A376679 Number of strict integer factorizations of n into nonsquarefree factors > 1.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 2, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 1, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Oct 08 2024

Keywords

Examples

			The a(3456) = 28 factorizations are:
  (4*8*9*12)  (4*9*96)    (36*96)   (3456)
              (8*9*48)    (4*864)
              (4*12*72)   (48*72)
              (4*16*54)   (54*64)
              (4*18*48)   (8*432)
              (4*24*36)   (9*384)
              (4*27*32)   (12*288)
              (4*8*108)   (16*216)
              (8*12*36)   (18*192)
              (8*16*27)   (24*144)
              (8*18*24)   (27*128)
              (9*12*32)   (32*108)
              (9*16*24)
              (12*16*18)
		

Crossrefs

Positions of zeros are A005117 (squarefree numbers), complement A013929.
For squarefree instead of nonsquarefree we have A050326, non-strict A050320.
For prime-powers we have A050361, non-strict A000688.
For nonprime numbers we have A050372, non-strict A050370.
The version for partitions is A256012, non-strict A114374.
For perfect-powers we have A323090, non-strict A294068.
The non-strict version is A376657.
Nonsquarefree numbers:
- A078147 (first differences)
- A376593 (second differences)
- A376594 (inflections and undulations)
- A376595 (nonzero curvature)
A000040 lists the prime numbers, differences A001223.
A001055 counts integer factorizations, strict A045778.
A005117 lists squarefree numbers, differences A076259.
A317829 counts factorizations of superprimorials, strict A337069.

Programs

  • JavaScript
    function nextNonSquareFree(val){val+=1;for(let i=2;i*i<=val;i+=1){if(val%i==0&&val%(i*i)==0){return val}}return nextNonSquareFree(val)}function strictFactorCount(val,maxFactor){if(val==1){return 1}let sum=0;while(maxFactorDominic McCarty, Oct 19 2024
  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],UnsameQ@@#&&NoneTrue[#,SquareFreeQ]&]],{n,100}] (* corrected by Gus Wiseman, Jun 27 2025 *)

A376657 Number of integer factorizations of n into nonsquarefree factors > 1.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 2, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 4, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 1, 1, 0, 0, 0, 2, 2, 0, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Oct 07 2024

Keywords

Examples

			The a(n) factorizations for n = 16, 64, 72, 144, 192, 256, 288:
  (16)   (64)     (72)    (144)    (192)     (256)      (288)
  (4*4)  (8*8)    (8*9)   (4*36)   (4*48)    (4*64)     (4*72)
         (4*16)   (4*18)  (8*18)   (8*24)    (8*32)     (8*36)
         (4*4*4)          (9*16)   (12*16)   (16*16)    (9*32)
                          (12*12)  (4*4*12)  (4*8*8)    (12*24)
                          (4*4*9)            (4*4*16)   (16*18)
                                             (4*4*4*4)  (4*8*9)
                                                        (4*4*18)
		

Crossrefs

For prime-powers we have A000688.
Positions of zeros are A005117 (squarefree numbers), complement A013929.
For squarefree instead of nonsquarefree we have A050320, strict A050326.
For nonprime numbers we have A050370.
The version for partitions is A114374.
For perfect-powers we have A294068.
For non-perfect-powers we have A303707.
For non-prime-powers we have A322452.
The strict case is A376679.
Nonsquarefree numbers:
- A078147 (first differences)
- A376593 (second differences)
- A376594 (inflections and undulations)
- A376595 (nonzero curvature)
A000040 lists the prime numbers, differences A001223.
A001055 counts integer factorizations, strict A045778.
A005117 lists squarefree numbers, differences A076259.
A317829 counts factorizations of superprimorials, strict A337069.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],NoneTrue[SquareFreeQ]]],{n,100}]
Showing 1-6 of 6 results.