A385379 The maximum possible number of distinct composite prime powers (A246547) in the factorization of n into prime powers.
0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0
Offset: 1
Examples
n | a(n) | factorization ---------+------+---------------------------------------- 4 | 1 | 2^2 32 | 2 | 2^2 * 2^3 288 | 3 | 2^2 * 2^3 * 3^2 4608 | 4 | 2^2 * 2^3 * 3^2 * 2^4 115200 | 5 | 2^2 * 2^3 * 3^2 * 2^4 * 5^2 3110400 | 6 | 2^2 * 2^3 * 3^2 * 2^4 * 5^2 * 3^3 99532800 | 7 | 2^2 * 2^3 * 3^2 * 2^4 * 5^2 * 3^3 * 2^5
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
f[p_, e_] := Floor[(Sqrt[8*e + 9] - 3)/2]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = vecsum(apply(x -> (sqrtint(8*x+9)-1)\2 , factor(n)[, 2]));
Comments