cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322623 E.g.f.: (1 + sinh(x)) / (1 - sinh(x)).

Original entry on oeis.org

1, 2, 4, 14, 64, 362, 2464, 19574, 177664, 1814162, 20583424, 256891934, 3497611264, 51588733562, 819450793984, 13946142745094, 253171058212864, 4883182404118562, 99727612182790144, 2149854113300939054, 48784173816258494464, 1162353473295706049162, 29013549746780744187904, 757126891483681641073814, 20616734677807356197208064, 584789894473832421848925362
Offset: 0

Views

Author

Paul D. Hanna, Dec 29 2018

Keywords

Comments

Equals the antidiagonal sums of square table A322620.
a(n) = 2*A006154(n) for n >= 1.

Examples

			E.g.f.: A(x) = 1 + 2*x + 4*x^2/2! + 14*x^3/3! + 64*x^4/4! + 362*x^5/5! + 2464*x^6/6! + 19574*x^7/7! + 177664*x^8/8! + 1814162*x^9/9! + ...
where
A(x) = 1 + 2*sinh(x) + 2*sinh(x)^2 + 2*sinh(x)^3 + 2*sinh(x)^4 + ...
		

Crossrefs

Programs

  • Maple
    S:= series((1+sinh(x))/(1-sinh(x)),x,51):
    seq(coeff(S,x,j)*j!,j=0..50);  #  Robert Israel, Dec 31 2018
  • PARI
    {a(n) = my(X = x +x*O(x^n)); n! * polcoeff( (1 + sinh(X)) / (1 - sinh(X)),n)}
    for(n=0,30, print1(a(n),", "))

Formula

a(n) = Sum_{k=0..n} A322620(n-k,k), for n >= 0.
a(n) ~ sqrt(2)*n!/log(1+sqrt(2))^(n+1). - Robert Israel, Dec 31 2018