A322630 Arithmetic table similar to multiplication with different rules for odd and even products, read by antidiagonals. T(n,k) = (n*k + A319929(n,k))/2.
1, 2, 2, 3, 2, 3, 4, 4, 4, 4, 5, 4, 7, 4, 5, 6, 6, 8, 8, 6, 6, 7, 6, 11, 8, 11, 6, 7, 8, 8, 12, 12, 12, 12, 8, 8, 9, 8, 15, 12, 17, 12, 15, 8, 9, 10, 10, 16, 16, 18, 18, 16, 16, 10, 10, 11, 10, 19, 16, 23, 18, 23, 16, 19, 10, 11
Offset: 1
Examples
Array T(n,k) begins: 1 2 3 4 5 6 7 8 9 10 2 2 4 4 6 6 8 8 10 10 3 4 7 8 11 12 15 16 19 20 4 4 8 8 12 12 16 16 20 20 5 6 11 12 17 18 23 24 29 30 6 6 12 12 18 18 24 24 30 30 7 8 15 16 23 24 31 32 39 40 8 8 16 16 24 24 32 32 40 40 9 10 19 20 29 30 39 40 49 50 10 10 20 20 30 30 40 40 50 50
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..11325 (rows 1..150, flattened).
Programs
-
Mathematica
Table[Function[n, Switch[FromDigits[Mod[{n, k}, 2], 2], 0, n k/2, 1, (n k + n)/2, 2, (n k + k)/2, , (n k + n + k - 1)/2]][m - k + 1], {m, 11}, {k, m}] // Flatten (* _Michael De Vlieger, Jan 14 2022 *)
-
PARI
T319929(n,k) = if (n%2, if (k%2, n+k-1, k), if (k%2, n, 0)); T(n,k) = (T319929(n,k) + n*k)/2; matrix(6, 6, n, k, T(n,k)) \\ Michel Marcus, Dec 22 2018
Formula
T(n,k) = (n*k + n + k - 1)/2 if n is odd and k is odd;
T(n,k) = (n*k + n)/2 if n is even and k is odd;
T(n,k) = (n*k + k)/2 if n is odd and k is even;
T(n,k) = n*k/2 if n is even and k is even.
Extensions
Name clarified by David Lovler, Jan 24 2022
Comments