A322632 Decimal expansion of the real solution to 23*x^5 - 41*x^4 + 10*x^3 - 6*x^2 - x - 1 = 0. Constant occurring in the asymptotic behavior of the number of lattice paths of slope 2/5, observed by D. Knuth.
1, 6, 3, 0, 2, 5, 7, 6, 6, 2, 9, 9, 0, 3, 5, 0, 1, 4, 0, 4, 2, 4, 8, 0, 1, 8, 4, 9, 3, 1, 5, 9, 8, 6, 3, 0, 0, 5, 1, 4, 5, 8, 4, 4, 2, 6, 6, 9, 0, 1, 4, 9, 4, 0, 5, 8, 4, 9, 8, 5, 0, 2, 6, 5, 9, 5, 2, 5, 6, 8, 9, 1, 2, 9, 8, 6, 8, 5, 0, 4, 7, 9, 8, 3, 4, 1, 3, 2, 4, 1
Offset: 1
Examples
1.6302576629903501404248018493159863005145844266901494058498502659525689...
Links
- Cyril Banderier, Michael Wallner, Lattice paths of slope 2/5, arXiv:1605.02967 [cs.DM], 10 May 2016.
- D. E. Knuth, Problems That Philippe Would Have Loved, Paris 2014.
Programs
-
Maple
evalf[100](solve(23*x^5-41*x^4+10*x^3-6*x^2-x-1=0,x)[1]); # Muniru A Asiru, Dec 21 2018
-
Mathematica
RealDigits[Root[23#^5 - 41#^4 + 10#^3 - 6#^2 - # - 1&, 1], 10, 100][[1]] (* Jean-François Alcover, Dec 30 2018 *)
-
PARI
solve(x=1,2,23*x^5-41*x^4+10*x^3-6*x^2-x-1)
Comments