A322637 Numbers that are sums of consecutive octagonal numbers (A000567).
0, 1, 8, 9, 21, 29, 30, 40, 61, 65, 69, 70, 96, 105, 126, 133, 134, 135, 161, 176, 201, 222, 225, 229, 230, 231, 280, 294, 309, 334, 341, 355, 363, 364, 401, 405, 408, 470, 481, 505, 510, 531, 534, 539, 540, 560, 621, 630, 645, 681, 695, 735, 736, 749, 756, 764, 765, 814, 833, 846
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Octagonal Number
Programs
-
Maple
N:= 1000: # for terms up to N Octa:= [seq(n*(3*n-2),n=0..floor((1+sqrt(1+3*N))/3))]: PS:= ListTools:-PartialSums(Octa): S:= select(`<=`,{0,seq(seq(PS[i]-PS[j],j=1..i-1),i=1..nops(PS))},N): sort(convert(S,list)); # Robert Israel, May 22 2025
-
Mathematica
terms = 60; nmax = 17; kmax = 9; (* empirical *) T = Table[n(3n-2), {n, 0, nmax}]; Union[T, Table[k MovingAverage[T, k], {k, 2, kmax}]//Flatten][[1 ;; terms]] (* Jean-François Alcover, Dec 26 2018 *)