A322670 Number T(n,k) of colored set partitions of [n] where colors of the elements of subsets are distinct and in increasing order and exactly k colors are used; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 1, 3, 0, 1, 12, 16, 0, 1, 41, 156, 131, 0, 1, 140, 1155, 2460, 1496, 0, 1, 497, 8020, 32600, 47355, 22482, 0, 1, 1848, 55629, 385420, 1004360, 1098678, 426833, 0, 1, 7191, 394884, 4396189, 18304510, 34625304, 30259712, 9934563
Offset: 0
Examples
T(3,2) = 12: 1a|2a3b, 1b|2a3b, 1a3b|2a, 1a3b|2b, 1a2b|3a, 1a2b|3b, 1a|2a|3b, 1a|2b|3a, 1b|2a|3a, 1a|2b|3b, 1b|2a|3b, 1b|2b|3a. Triangle T(n,k) begins: 1; 0, 1; 0, 1, 3; 0, 1, 12, 16; 0, 1, 41, 156, 131; 0, 1, 140, 1155, 2460, 1496; 0, 1, 497, 8020, 32600, 47355, 22482; 0, 1, 1848, 55629, 385420, 1004360, 1098678, 426833; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
- Wikipedia, Partition of a set
Crossrefs
Programs
-
Maple
A:= proc(n, k) option remember; `if`(n=0, 1, add(A(n-j, k)* binomial(n-1, j-1)*binomial(k, j), j=1..min(k, n))) end: T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k): seq(seq(T(n, k), k=0..n), n=0..10);
-
Mathematica
A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[A[n-j, k] Binomial[n-1, j-1]* Binomial[k, j], {j, 1, Min[k, n]}]]; T[n_, k_] := Sum[A[n, k-i] (-1)^i Binomial[k, i], {i, 0, k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 30 2020, after Alois P. Heinz *)
Formula
Sum_{k=1..n} k * T(n,k) = A325930(n).