cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322671 a(n) = Sum_{d|n} (pod(d)/d), where pod(k) is the product of the divisors of k (A007955).

Original entry on oeis.org

1, 2, 2, 4, 2, 9, 2, 12, 5, 13, 2, 155, 2, 17, 18, 76, 2, 336, 2, 415, 24, 25, 2, 13987, 7, 29, 32, 803, 2, 27035, 2, 1100, 36, 37, 38, 280418, 2, 41, 42, 64423, 2, 74133, 2, 1963, 2046, 49, 2, 5322467, 9, 2518, 54, 2735, 2, 157827, 58, 176427, 60, 61, 2
Offset: 1

Views

Author

Jaroslav Krizek, Dec 23 2018

Keywords

Examples

			For n = 6; a(6) = pod(1)/1 + pod(2)/2 + pod(3)/3 + pod(6)/6 = 1/1 + 2/2 + 3/3 + 36/6 = 9.
		

Crossrefs

Programs

  • Magma
    [&+[&*[c: c in Divisors(d)] / d: d in Divisors(n)]: n in [1..100]];
    
  • Maple
    pod:= proc(n) convert(numtheory:-divisors(n),`*`) end proc:
    f:= proc(n) local d; add(pod(d)/d, d = numtheory:-divisors(n)) end proc:
    map(f, [$1..100]); # Robert Israel, Dec 23 2018
  • Mathematica
    Array[Sum[Apply[Times, Divisors@ d]/d, {d, Divisors@ #}] &, 59] (* Michael De Vlieger, Jan 19 2019 *)
  • PARI
    a(n) = sumdiv(n, d, vecprod(divisors(d))/d); \\ Michel Marcus, Dec 23 2018
    
  • Python
    from math import isqrt
    from sympy import divisor_count, divisors
    def A322671(n): return sum(isqrt(d)**(c-2) if (c:=divisor_count(d)) & 1 else d**(c//2-1) for d in divisors(n,generator=True)) # Chai Wah Wu, Jun 25 2022

Formula

a(n) = n for n = 1, 2 and 4.
a(n) = n + (tau(n) - 1) = n + 3 for squarefree semiprimes (A006881).
a(n) = 2 if n is prime. - Robert Israel, Dec 23 2018