cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322673 a(n) = numerator of Product_{d|n} (sigma(d)/d) where sigma(k) = the sum of the divisors of k (A000203).

Original entry on oeis.org

1, 3, 4, 21, 6, 4, 8, 315, 52, 81, 12, 49, 14, 144, 64, 9765, 18, 338, 20, 11907, 1024, 324, 24, 1225, 186, 441, 2080, 72, 30, 20736, 32, 615195, 256, 729, 2304, 753571, 38, 900, 3136, 321489, 42, 65536, 44, 11907, 21632, 1296, 48, 1177225, 456, 233523, 576
Offset: 1

Views

Author

Jaroslav Krizek, Dec 23 2018

Keywords

Examples

			For n=4; Product_{d|4} (sigma(d)/d) = (sigma(1)/1)*(sigma(2)/2)*(sigma(4)/4) = (1/1)*(3/2)*(7/4) = 21/8; a(4) = 21.
		

Crossrefs

Cf. A000203, A318491, A318492, A299788 (denominator).

Programs

  • Magma
    [Numerator(&*[&+[c: c in Divisors(d)] / d: d in Divisors(n)]): n in [1..100]];
    
  • Mathematica
    Array[Numerator@ Product[DivisorSigma[1, d]/d, {d, Divisors@ #}] &, 51] (* Michael De Vlieger, Jan 19 2019 *)
  • PARI
    a(n) = my(d=divisors(n)); numerator(prod(k=1, #d, sigma(d[k])/d[k])); \\ Michel Marcus, Dec 23 2018, May 11 2020

Formula

a(n) = n + 1 for n = primes (A000040).