cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322675 a(n) = n * (4*n + 3)^2.

Original entry on oeis.org

0, 49, 242, 675, 1444, 2645, 4374, 6727, 9800, 13689, 18490, 24299, 31212, 39325, 48734, 59535, 71824, 85697, 101250, 118579, 137780, 158949, 182182, 207575, 235224, 265225, 297674, 332667, 370300, 410669, 453870, 499999, 549152, 601425, 656914, 715715, 777924, 843637
Offset: 0

Views

Author

Seiichi Manyama, Dec 23 2018

Keywords

Examples

			(sqrt(2) - sqrt(1))^3 = 5*sqrt(2) - 7 = sqrt(50) - sqrt(49). So a(1) = 49.
		

Crossrefs

Column 3 of A322699.
sqrt(a(n)+1) + sqrt(a(n)) = (sqrt(n+1) + sqrt(n))^k: A033996(n) (k=2), this sequence (k=3), A322677 (k=4), A322745 (k=5).

Programs

  • PARI
    {a(n) = n*(4*n+3)^2}
    
  • PARI
    concat(0, Vec(x*(49 + 46*x + x^2) / (1 - x)^4 + O(x^40))) \\ Colin Barker, Dec 23 2018

Formula

sqrt(a(n)+1) + sqrt(a(n)) = (sqrt(n+1) + sqrt(n))^3.
sqrt(a(n)+1) - sqrt(a(n)) = (sqrt(n+1) - sqrt(n))^3.
Sum_{n>=1} 1/a(n) = 8/27 + 2*c/3 + Pi/18 - Pi^2/12 - log(2)/3 = 0.027956857336446942649782759291008857522041405948099294509008..., where c is the Catalan constant A006752. - Vaclav Kotesovec, Dec 23 2018
From Colin Barker, Dec 23 2018: (Start)
G.f.: x*(49 + 46*x + x^2) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3.
(End)