A322746 a(n) = 1/2 * (-1 + Sum_{k=0..n} binomial(2*n,2*k)*(n+1)^(n-k)*n^k).
0, 1, 24, 675, 25920, 1275125, 76545000, 5425069447, 443365544448, 41047124680809, 4245890890571000, 485307363135371051, 60742714406414040000, 8262695239025750162653, 1213734518568509516047560, 191478489107270936785743375, 32288451913272713227175006208
Offset: 0
Keywords
Examples
(sqrt(3) + sqrt(2))^2 = 5 + 2*sqrt(6) = sqrt(25) + sqrt(24). So a(2) = 24.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..321
- Wikipedia, Chebyshev polynomials.
- Index entries for sequences related to Chebyshev polynomials.
Programs
-
PARI
{a(n) = 1/2*(-1+sum(k=0, n, binomial(2*n,2*k)*(n+1)^(n-k)*n^k))}
-
PARI
{a(n) = (polchebyshev(n, 1, 2*n+1)-1)/2}
Formula
sqrt(a(n)+1) + sqrt(a(n)) = (sqrt(n+1) + sqrt(n))^n.
sqrt(a(n)+1) - sqrt(a(n)) = (sqrt(n+1) - sqrt(n))^n.
a(n) = (A173174(n) - 1)/2.
a(n) ~ exp(1/2) * 2^(2*n - 2) * n^n. - Vaclav Kotesovec, Dec 25 2018