A322770 Array read by upwards antidiagonals: T(m,n) = number of set partitions into distinct parts of the multiset consisting of one copy each of x_1, x_2, ..., x_m, and two copies each of y_1, y_2, ..., y_n, for m >= 0, n >= 0.
1, 1, 1, 2, 3, 5, 5, 9, 18, 40, 15, 31, 70, 172, 457, 52, 120, 299, 801, 2295, 6995, 203, 514, 1393, 4025, 12347, 40043, 136771, 877, 2407, 7023, 21709, 70843, 243235, 875936, 3299218, 4140, 12205, 38043, 124997, 431636, 1562071, 5908978, 23308546, 95668354
Offset: 0
Examples
The array begins: 1, 1, 5, 40, 457, 6995, 136771, ... 1, 3, 18, 172, 2295, 40043, 875936, ... 2, 9, 70, 801, 12347, 243235, 5908978, ... 5, 31, 299, 4025, 70843, 1562071, 41862462, ... 15, 120, 1393, 21709, 431636, 10569612, 310606617, ... 52, 514, 7023, 124997, 2781372, 75114998, 2407527172, ... 203, 2407, 38043, 764538, 18885177, 559057663, 19449364539, ... ...
References
- D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, page 778. (Background information.)
Links
- Alois P. Heinz, Antidiagonals n = 0..140, flattened
- D. E. Knuth, Partitioning a multiset into submultisets, Email to N. J. A. Sloane, Dec 29 2018.
Crossrefs
Programs
-
Maple
B := n -> combinat[bell](n): Q := proc(m,n) local k; global B; option remember; if n = 0 then B(m) else (1/2)*( Q(m+2,n-1) + Q(m+1,n-1) - add( binomial(n-1,k)*Q(m,k), k=0..n-1) ); fi; end; # Q(m,n) (which is Knuth's notation) is T(m,n)
-
Mathematica
Q[m_, n_] := Q[m, n] = If[n == 0, BellB[m], (1/2)(Q[m+2, n-1] + Q[m+1, n-1] - Sum[Binomial[n-1, k] Q[m, k], {k, 0, n-1}])]; Table[Q[m-n, n], {m, 0, 8}, {n, 0, m}] // Flatten (* Jean-François Alcover, Jan 02 2019, from Maple *)
Formula
Knuth gives a recurrence using the Bell numbers A000110 (see Maple program).