Original entry on oeis.org
5, 18, 70, 299, 1393, 7023, 38043, 220054, 1352082, 8784991, 60125371, 432001747, 3248914361, 25508188118, 208592396802, 1772921926183, 15632838989393, 142759592985079, 1348095912827295, 13145321614286610, 132188675368994446, 1369216940917868547
Offset: 0
Original entry on oeis.org
40, 172, 801, 4025, 21709, 124997, 764538, 4945866, 33710579, 241273791, 1807949285, 14146621349, 115316563400, 977216138500, 8592652709041, 78263082518169, 737228862573509, 7172071557558805, 71964172085006666, 743866850349092130, 7912230538914051723
Offset: 0
Original entry on oeis.org
1, 3, 18, 172, 2295, 40043, 875936, 23308546, 737478487, 27252363585, 1159335917625, 56103737161197, 3057787510932485, 186102920689311261, 12555513437042340449, 932964243520888524391, 75926403820972271325522, 6733532223196893844825456, 647846856775383975668238328, 67349524752043243630964385000
Offset: 0
-
b:= proc(n) option remember; `if`(n=0, 1,
add(b(n-j)*binomial(n-1, j-1), j=1..n))
end:
A:= proc(n, k) option remember; `if`(n A(n, n+1):
seq(a(n), n=0..19); # Alois P. Heinz, Jul 21 2021
-
Q[m_, n_] := Q[m, n] = If[n == 0, BellB[m], (1/2)(Q[m+2, n-1] + Q[m+1, n-1] - Sum[Binomial[n-1, k] Q[m, k], {k, 0, n-1}])];
a[n_] := Q[1, n];
Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Apr 29 2022 *)
Original entry on oeis.org
2, 9, 70, 801, 12347, 243235, 5908978, 172449180, 5925731200, 235946129714, 10745098631229, 553630279110396, 31978001903989065, 2054387367168242251, 145795148420558536232, 11361381129471379493270, 967044630942570464100761, 89483154423059719127570924, 8963545185499520505954151682
Offset: 0
-
b:= proc(n) option remember; `if`(n=0, 1,
add(b(n-j)*binomial(n-1, j-1), j=1..n))
end:
A:= proc(n, k) option remember; `if`(n A(n, n+2):
seq(a(n), n=0..18); # Alois P. Heinz, Jul 21 2021
-
Q[m_, n_] := Q[m, n] = If[n == 0, BellB[m], (1/2)(Q[m+2, n-1] + Q[m+1, n-1] - Sum[Binomial[n-1, k] Q[m, k], {k, 0, n-1}])];
a[n_] := Q[2, n];
Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Apr 29 2022 *)
Original entry on oeis.org
1, 3, 70, 4025, 431636, 75114998, 19449364539, 7059006496410, 3437740821764782, 2172596362927904998, 1735323511562307096513, 1714589657484702134799407, 2058734042458059390066278968, 2959366820014712815406422598389, 5028070020338050558675966002870476
Offset: 0
A346517
Number A(n,k) of partitions of the (n+k)-multiset {1,2,...,n,1,2,...,k} into distinct multisets; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 5, 3, 3, 5, 15, 9, 5, 9, 15, 52, 31, 18, 18, 31, 52, 203, 120, 70, 40, 70, 120, 203, 877, 514, 299, 172, 172, 299, 514, 877, 4140, 2407, 1393, 801, 457, 801, 1393, 2407, 4140, 21147, 12205, 7023, 4025, 2295, 2295, 4025, 7023, 12205, 21147
Offset: 0
A(2,2) = 5: 1122, 11|22, 1|122, 112|2, 1|12|2.
Square array A(n,k) begins:
1, 1, 2, 5, 15, 52, 203, 877, ...
1, 1, 3, 9, 31, 120, 514, 2407, ...
2, 3, 5, 18, 70, 299, 1393, 7023, ...
5, 9, 18, 40, 172, 801, 4025, 21709, ...
15, 31, 70, 172, 457, 2295, 12347, 70843, ...
52, 120, 299, 801, 2295, 6995, 40043, 243235, ...
203, 514, 1393, 4025, 12347, 40043, 136771, 875936, ...
877, 2407, 7023, 21709, 70843, 243235, 875936, 3299218, ...
...
Columns (or rows) k=0-10 give:
A000110,
A087648,
A322773,
A322774,
A346897,
A346898,
A346899,
A346900,
A346901,
A346902,
A346903.
First upper (or lower) diagonal gives
A322771.
Second upper (or lower) diagonal gives
A322772.
-
g:= proc(n, k) option remember; uses numtheory; `if`(n>k, 0, 1)+
`if`(isprime(n), 0, add(`if`(d>k or max(factorset(n/d))>d, 0,
g(n/d, d-1)), d=divisors(n) minus {1, n}))
end:
p:= proc(n) option remember; `if`(n=0, 1, p(n-1)*ithprime(n)) end:
A:= (n, k)-> g(p(n)*p(k)$2):
seq(seq(A(n, d-n), n=0..d), d=0..10);
# second Maple program:
b:= proc(n) option remember; `if`(n=0, 1,
add(b(n-j)*binomial(n-1, j-1), j=1..n))
end:
A:= proc(n, k) option remember; `if`(n
-
(* Q is A322770 *)
Q[m_, n_] := Q[m, n] = If[n == 0, BellB[m], (1/2)(Q[m+2, n-1] + Q[m+1, n-1] - Sum[Binomial[n-1, k] Q[m, k], {k, 0, n-1}])];
A[n_, k_] := Q[Abs[n-k], Min[n, k]];
Table[A[n, d-n], {d, 0, 10}, {n, 0, d}] // Flatten (* Jean-François Alcover, Aug 19 2021 *)
A322765
Array read by upwards antidiagonals: T(m,n) = number of set partitions of the multiset consisting of one copy each of x_1, x_2, ..., x_m, and two copies each of y_1, y_2, ..., y_n, for m >= 0, n >= 0.
Original entry on oeis.org
1, 1, 2, 2, 4, 9, 5, 11, 26, 66, 15, 36, 92, 249, 712, 52, 135, 371, 1075, 3274, 10457, 203, 566, 1663, 5133, 16601, 56135, 198091, 877, 2610, 8155, 26683, 91226, 325269, 1207433, 4659138, 4140, 13082, 43263, 149410, 537813, 2014321, 7837862, 31638625, 132315780
Offset: 0
The array begins:
1, 2, 9, 66, 712, 10457, 198091, ...
1, 4, 26, 249, 3274, 56135, 1207433, ...
2, 11, 92, 1075, 16601, 325269, 7837862, ...
5, 36, 371, 5133, 91226, 2014321, 53840640, ...
15, 135, 1663, 26683, 537813, 13241402, 389498179, ...
52, 566, 8155, 149410, 3376696, 91914202, 2955909119, ...
203, 2610, 43263, 894124, 22451030, 670867539, 23456071495, ...
...
- D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, page 778.
See
A322770 for partitions into distinct parts.
-
B := n -> combinat[bell](n):
P := proc(m,n) local k; global B; option remember;
if n = 0 then B(m) else
(1/2)*( P(m+2,n-1) + P(m+1,n-1) + add( binomial(n-1,k)*P(m,k), k=0..n-1) ); fi; end; # P(m,n) (which is Knuth's notation) is T(m,n)
-
P[m_, n_] := P[m, n] = If[n == 0, BellB[m], (1/2)(P[m+2, n-1] + P[m+1, n-1] + Sum[Binomial[n-1, k] P[m, k], {k, 0, n-1}])];
Table[P[m-n, n], {m, 0, 8}, {n, 0, m}] // Flatten (* Jean-François Alcover, Jan 02 2019, from Maple *)
-
{T(n, k) = if(k==0, sum(j=0, n, stirling(n, j, 2)), (T(n+2, k-1)+T(n+1, k-1)+sum(j=0, k-1, binomial(k-1, j)*T(n, j)))/2)} \\ Seiichi Manyama, Nov 21 2020
A087648
a(n) = (1/2)*(Bell(n+2)+Bell(n+1)-Bell(n)).
Original entry on oeis.org
1, 3, 9, 31, 120, 514, 2407, 12205, 66491, 386699, 2388096, 15589732, 107165081, 773106715, 5836100685, 45981026703, 377230766908, 3215977070706, 28437411817135, 260380616093533, 2464930698184351, 24091925888687459, 242802079705721156, 2520198597834860148
Offset: 0
-
[(1/2)*(Bell(n+2)+Bell(n+1)-Bell(n)) : n in [0..30]]; // Vincenzo Librandi, Nov 13 2011
-
f[0]=1; f[n_] := Sum[ StirlingS2[n, k]*Binomial[k+2, k ], {k, 1, n}]; Table[ f[n], {n, 0, 20}] (* Zerinvary Lajos, Mar 31 2007 *)
(#[[3]]+#[[2]]-#[[1]])/2&/@Partition[BellB[Range[0,30]],3,1] (* Harvey P. Dale, Jul 20 2021 *)
A346518
Total number of partitions of all n-multisets {1,2,...,n-j,1,2,...,j} into distinct multisets for 0 <= j <= n.
Original entry on oeis.org
1, 2, 5, 16, 53, 202, 826, 3724, 17939, 93390, 516125, 3042412, 18923139, 124368810, 857827458, 6208594458, 46937360868, 370335617694, 3039823038753, 25928519847988, 229285625745624, 2099543718917418, 19872430464012935, 194203934113959970, 1956736801957704866
Offset: 0
-
b:= proc(n) option remember; `if`(n=0, 1,
add(b(n-j)*binomial(n-1, j-1), j=1..n))
end:
A:= proc(n, k) option remember; `if`(n add(A(n-j, j), j=0..n):
seq(a(n), n=0..24);
-
(* Q is A322770 *)
Q[m_, n_] := Q[m, n] = If[n == 0, BellB[m], (1/2) (Q[m + 2, n - 1] +
Q[m + 1, n - 1] - Sum[Binomial[n - 1, k] Q[m, k], {k, 0, n - 1}])];
A[n_, k_] := Q[Abs[n - k], Min[n, k]];
a[n_] := Sum[A[n - j, j], {j, 0, n}];
Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Apr 06 2022 *)
Showing 1-9 of 9 results.
Comments