Original entry on oeis.org
66, 249, 1075, 5133, 26683, 149410, 894124, 5683643, 38186471, 270054693, 2003233849, 15539557832, 125727364954, 1058517565329, 9254401000167, 83864649249661, 786443164853871, 7620060523287298, 76182494678422156, 784894262599538443, 8323844770001318027, 90767456208155581709
Offset: 0
- D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, page 778.
-
T(n, k) = if(k==0, sum(j=0, n, stirling(n, j, 2)), (T(n+2, k-1)+T(n+1, k-1)+sum(j=0, k-1, binomial(k-1, j)*T(n, j)))/2);
vector(20, n, T(n-1, 3)) \\ Seiichi Manyama, Nov 21 2020
Original entry on oeis.org
1, 4, 26, 249, 3274, 56135, 1207433, 31638625, 987249425, 36030130677, 1515621707692, 72603595393584, 3920675798922189, 236615520916677436, 15840357595697061964, 1168697367186883073296, 94486667847573203169757, 8328527812527985862657297, 796762955545266206229493979
Offset: 0
- D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, page 778.
-
b:= proc(n) option remember; `if`(n=0, 1,
add(b(n-j)*binomial(n-1, j-1), j=1..n))
end:
A:= proc(n, k) option remember; `if`(n A(n, n+1):
seq(a(n), n=0..22); # Alois P. Heinz, Jul 21 2021
-
b[n_] := b[n] = If[n == 0, 1,
Sum[b[n - j]*Binomial[n-1, j-1], {j, 1, n}]];
A[n_, k_] := A[n, k] = If[n < k, A[k, n],
If[k == 0, b[n], (A[n+1, k - 1] + Sum[A[n - k + j, j]*
Binomial[k-1, j], {j, 0, k - 1}] + A[n, k - 1])/2]];
a[n_] := A[n, n + 1]; Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Jun 01 2022, after Alois P. Heinz *)
Original entry on oeis.org
2, 11, 92, 1075, 16601, 325269, 7837862, 226700129, 7720099374, 304732680254, 13763771702539, 703691774091622, 40351866669219915, 2574830780826344436, 181574292457398520558, 14065771632972561098569, 1190588796562104776974207
Offset: 0
- D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, page 778.
-
b:= proc(n) option remember; `if`(n=0, 1,
add(b(n-j)*binomial(n-1, j-1), j=1..n))
end:
A:= proc(n, k) option remember; `if`(n A(n, n+2):
seq(a(n), n=0..22); # Alois P. Heinz, Jul 21 2021
-
P[m_, n_] := P[m, n] = If[n == 0, BellB[m], (1/2)(P[m+2, n-1] + P[m+1, n-1] + Sum[Binomial[n-1, k] P[m, k], {k, 0, n-1}])];
a[n_] := P[2, n];
Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Apr 29 2022 *)
Original entry on oeis.org
1, 4, 92, 5133, 537813, 91914202, 23456071495, 8411911367949, 4055497274641836, 2540939492105630071, 2014322292658946180922, 1977121111959534634757742, 2360026677940190304494287625, 3374607252811005168634470847052, 5706308288951111509370981721908854
Offset: 0
- D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, page 778.
-
b:= proc(n) option remember; `if`(n=0, 1,
add(b(n-j)*binomial(n-1, j-1), j=1..n))
end:
A:= proc(n, k) option remember; `if`(n A(2*n, n):
seq(a(n), n=0..15); # Alois P. Heinz, Jul 21 2021
-
P[m_, n_] := P[m, n] = If[n == 0, BellB[m], (1/2)(P[m+2, n-1] + P[m+1, n-1] + Sum[Binomial[n-1, k] P[m, k], {k, 0, n-1}])];
a[n_] := P[n, n];
Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Apr 29 2022 *)
A020555
Number of multigraphs on n labeled edges (with loops). Also number of genetically distinct states amongst n individuals.
Original entry on oeis.org
1, 2, 9, 66, 712, 10457, 198091, 4659138, 132315780, 4441561814, 173290498279, 7751828612725, 393110572846777, 22385579339430539, 1419799938299929267, 99593312799819072788, 7678949893962472351181, 647265784993486603555551, 59357523410046023899154274
Offset: 0
From _Gus Wiseman_, Jul 18 2018: (Start)
The a(2) = 9 multiset partitions of {1, 1, 2, 2}:
(1122),
(1)(122), (2)(112), (11)(22), (12)(12),
(1)(1)(22), (1)(2)(12), (2)(2)(11),
(1)(1)(2)(2).
(End)
- D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, page 778. - N. J. A. Sloane, Dec 30 2018
- E. Keith Lloyd, Math. Proc. Camb. Phil. Soc., vol. 103 (1988), 277-284.
- A. Murthy, Generalization of partition function, introducing Smarandache factor partitions. Smarandache Notions Journal, Vol. 11, No. 1-2-3, Spring 2000.
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
- Alois P. Heinz, Table of n, a(n) for n = 0..310 (first 101 terms from Vincenzo Librandi)
- G. Labelle, Counting enriched multigraphs according to the number of their edges (or arcs), Discrete Math., 217 (2000), 237-248.
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004. [Cached copy, with permission]
- Marko Riedel et al., Set partitions of {1,1,2,2,...,n,n}
- E. A. Thompson, Gene identities and multiple relationships. Biometrics 30 (1974), 667-680. See Table 5.
-
B := n -> combinat[bell](n):
P := proc(m,n) local k; global B; option remember;
if n = 0 then B(m) else
(1/2)*( P(m+2,n-1) + P(m+1,n-1) + add( binomial(n-1,k)*P(m,k), k=0..n-1) ); fi; end;
r:=m->[seq(P(m,n),n=0..20)]; r(0); # N. J. A. Sloane, Dec 30 2018
-
max = 16; s = Series[Exp[-3/2 + Exp[x]/2]*Sum[Exp[Binomial[n+1, 2]*x]/n!, {n, 0, 3*max }], {x, 0, max}] // Normal; a[n_] := SeriesCoefficient[s, {x, 0, n}]*n!; Table[a[n] // Round, {n, 0, max} ] (* Jean-François Alcover, Apr 23 2014, after Vladeta Jovovic *)
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
Table[Length[mps[Ceiling[Range[1/2,n,1/2]]]],{n,5}] (* Gus Wiseman, Jul 18 2018 *)
A035098
Near-Bell numbers: partitions of an n-multiset with multiplicities 1, 1, 1, ..., 1, 2.
Original entry on oeis.org
1, 2, 4, 11, 36, 135, 566, 2610, 13082, 70631, 407846, 2504071, 16268302, 111378678, 800751152, 6027000007, 47363985248, 387710909055, 3298841940510, 29119488623294, 266213358298590, 2516654856419723, 24566795704844210
Offset: 1
a(3)=4 because there are 4 ways to partition the multiset {1,2,2} (with multiplicities {1,2}): {{1,2,2}} {{1,2},{2}} {{1},{2,2}} {{1},{2},{2}}.
- D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, page 778. - N. J. A. Sloane, Dec 30 2018
- Alois P. Heinz, Table of n, a(n) for n = 1..576 (first 200 terms from Vincenzo Librandi)
- M. Griffiths, Generalized Near-Bell Numbers, JIS 12 (2009) 09.5.7.
- M. Griffiths, I. Mezo, A generalization of Stirling Numbers of the Second Kind via a special multiset, JIS 13 (2010) #10.2.5.
- Martin Griffiths, Generating Functions for Extended Stirling Numbers of the First Kind, Journal of Integer Sequences, 17 (2014), #14.6.4.
-
with(combinat): a:= n-> floor(1/2*(bell(n-2)+bell(n-1)+bell(n))): seq(a(n), n=1..25); # Zerinvary Lajos, Oct 07 2007
-
f[n_] := Sum[ StirlingS2[n, k] ((k + 1) (k + 2)/2 + 1), {k, 0, n}]; Array[f, 22, 0]
f[n_] := (BellB[n] + BellB[n + 1] + BellB[n + 2])/2; Array[f, 22, 0]
Range[0, 21]! CoefficientList[ Series[ (1 + Exp@ x)^2/2 Exp[ Exp@ x - 1], {x, 0, 21}], x] (* 3 variants by Robert G. Wilson v, Jan 13 2011 *)
Join[{1},Total[#]/2&/@Partition[BellB[Range[0,30]],3,1]] (* Harvey P. Dale, Jan 02 2019 *)
A346500
Number A(n,k) of partitions of the (n+k)-multiset {1,2,...,n,1,2,...,k}; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 2, 2, 2, 5, 4, 4, 5, 15, 11, 9, 11, 15, 52, 36, 26, 26, 36, 52, 203, 135, 92, 66, 92, 135, 203, 877, 566, 371, 249, 249, 371, 566, 877, 4140, 2610, 1663, 1075, 712, 1075, 1663, 2610, 4140, 21147, 13082, 8155, 5133, 3274, 3274, 5133, 8155, 13082, 21147
Offset: 0
A(2,2) = 9: 1122, 11|22, 12|12, 1|122, 112|2, 11|2|2, 1|1|22, 1|12|2, 1|1|2|2.
Square array A(n,k) begins:
1, 1, 2, 5, 15, 52, 203, 877, ...
1, 2, 4, 11, 36, 135, 566, 2610, ...
2, 4, 9, 26, 92, 371, 1663, 8155, ...
5, 11, 26, 66, 249, 1075, 5133, 26683, ...
15, 36, 92, 249, 712, 3274, 16601, 91226, ...
52, 135, 371, 1075, 3274, 10457, 56135, 325269, ...
203, 566, 1663, 5133, 16601, 56135, 198091, 1207433, ...
877, 2610, 8155, 26683, 91226, 325269, 1207433, 4659138, ...
...
Columns (or rows) k=0-10 give:
A000110,
A035098,
A322764,
A322768,
A346881,
A346882,
A346883,
A346884,
A346885,
A346886,
A346887.
First upper (or lower) diagonal gives
A322766.
Second upper (or lower) diagonal gives
A322767.
-
g:= proc(n, k) option remember; uses numtheory; `if`(n>k, 0, 1)+
`if`(isprime(n), 0, add(`if`(d>k or max(factorset(n/d))>d, 0,
g(n/d, d)), d=divisors(n) minus {1, n}))
end:
p:= proc(n) option remember; `if`(n=0, 1, p(n-1)*ithprime(n)) end:
A:= (n, k)-> g(p(n)*p(k)$2):
seq(seq(A(n, d-n), n=0..d), d=0..10);
# second Maple program:
b:= proc(n) option remember; `if`(n=0, 1,
add(b(n-j)*binomial(n-1, j-1), j=1..n))
end:
A:= proc(n, k) option remember; `if`(n
-
b[n_] := b[n] = If[n == 0, 1, Sum[b[n-j] Binomial[n-1, j-1], {j, 1, n}]];
A[n_, k_] := A[n, k] = If[n < k, A[k, n],
If[k == 0, b[n], (A[n + 1, k - 1] + Sum[A[n - k + j, j]*
Binomial[k - 1, j], {j, 0, k - 1}] + A[n, k - 1])/2]];
Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Aug 18 2021, after Alois P. Heinz's second program *)
A322764
Number of set partitions of the multiset consisting of one copy each of x_1, x_2, ..., x_n, and 2 copies each of y_1 and y_2.
Original entry on oeis.org
9, 26, 92, 371, 1663, 8155, 43263, 246218, 1493344, 9600683, 65133513, 464538351, 3471671717, 27109690422, 220646396816, 1867649896679, 16408260807503, 149357276866099, 1406334890073883, 13677748330883790, 137221985081833892
Offset: 0
- D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, page 778.
-
T(n, k) = if(k==0, sum(j=0, n, stirling(n, j, 2)), (T(n+2, k-1)+T(n+1, k-1)+sum(j=0, k-1, binomial(k-1, j)*T(n, j)))/2);
vector(20, n, T(n-1, 2)) \\ Seiichi Manyama, Nov 21 2020
Showing 1-8 of 8 results.
Comments