A020555
Number of multigraphs on n labeled edges (with loops). Also number of genetically distinct states amongst n individuals.
Original entry on oeis.org
1, 2, 9, 66, 712, 10457, 198091, 4659138, 132315780, 4441561814, 173290498279, 7751828612725, 393110572846777, 22385579339430539, 1419799938299929267, 99593312799819072788, 7678949893962472351181, 647265784993486603555551, 59357523410046023899154274
Offset: 0
From _Gus Wiseman_, Jul 18 2018: (Start)
The a(2) = 9 multiset partitions of {1, 1, 2, 2}:
(1122),
(1)(122), (2)(112), (11)(22), (12)(12),
(1)(1)(22), (1)(2)(12), (2)(2)(11),
(1)(1)(2)(2).
(End)
- D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, page 778. - N. J. A. Sloane, Dec 30 2018
- E. Keith Lloyd, Math. Proc. Camb. Phil. Soc., vol. 103 (1988), 277-284.
- A. Murthy, Generalization of partition function, introducing Smarandache factor partitions. Smarandache Notions Journal, Vol. 11, No. 1-2-3, Spring 2000.
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
- Alois P. Heinz, Table of n, a(n) for n = 0..310 (first 101 terms from Vincenzo Librandi)
- G. Labelle, Counting enriched multigraphs according to the number of their edges (or arcs), Discrete Math., 217 (2000), 237-248.
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004. [Cached copy, with permission]
- Marko Riedel et al., Set partitions of {1,1,2,2,...,n,n}
- E. A. Thompson, Gene identities and multiple relationships. Biometrics 30 (1974), 667-680. See Table 5.
-
B := n -> combinat[bell](n):
P := proc(m,n) local k; global B; option remember;
if n = 0 then B(m) else
(1/2)*( P(m+2,n-1) + P(m+1,n-1) + add( binomial(n-1,k)*P(m,k), k=0..n-1) ); fi; end;
r:=m->[seq(P(m,n),n=0..20)]; r(0); # N. J. A. Sloane, Dec 30 2018
-
max = 16; s = Series[Exp[-3/2 + Exp[x]/2]*Sum[Exp[Binomial[n+1, 2]*x]/n!, {n, 0, 3*max }], {x, 0, max}] // Normal; a[n_] := SeriesCoefficient[s, {x, 0, n}]*n!; Table[a[n] // Round, {n, 0, max} ] (* Jean-François Alcover, Apr 23 2014, after Vladeta Jovovic *)
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
Table[Length[mps[Ceiling[Range[1/2,n,1/2]]]],{n,5}] (* Gus Wiseman, Jul 18 2018 *)
A346500
Number A(n,k) of partitions of the (n+k)-multiset {1,2,...,n,1,2,...,k}; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 2, 2, 2, 5, 4, 4, 5, 15, 11, 9, 11, 15, 52, 36, 26, 26, 36, 52, 203, 135, 92, 66, 92, 135, 203, 877, 566, 371, 249, 249, 371, 566, 877, 4140, 2610, 1663, 1075, 712, 1075, 1663, 2610, 4140, 21147, 13082, 8155, 5133, 3274, 3274, 5133, 8155, 13082, 21147
Offset: 0
A(2,2) = 9: 1122, 11|22, 12|12, 1|122, 112|2, 11|2|2, 1|1|22, 1|12|2, 1|1|2|2.
Square array A(n,k) begins:
1, 1, 2, 5, 15, 52, 203, 877, ...
1, 2, 4, 11, 36, 135, 566, 2610, ...
2, 4, 9, 26, 92, 371, 1663, 8155, ...
5, 11, 26, 66, 249, 1075, 5133, 26683, ...
15, 36, 92, 249, 712, 3274, 16601, 91226, ...
52, 135, 371, 1075, 3274, 10457, 56135, 325269, ...
203, 566, 1663, 5133, 16601, 56135, 198091, 1207433, ...
877, 2610, 8155, 26683, 91226, 325269, 1207433, 4659138, ...
...
Columns (or rows) k=0-10 give:
A000110,
A035098,
A322764,
A322768,
A346881,
A346882,
A346883,
A346884,
A346885,
A346886,
A346887.
First upper (or lower) diagonal gives
A322766.
Second upper (or lower) diagonal gives
A322767.
-
g:= proc(n, k) option remember; uses numtheory; `if`(n>k, 0, 1)+
`if`(isprime(n), 0, add(`if`(d>k or max(factorset(n/d))>d, 0,
g(n/d, d)), d=divisors(n) minus {1, n}))
end:
p:= proc(n) option remember; `if`(n=0, 1, p(n-1)*ithprime(n)) end:
A:= (n, k)-> g(p(n)*p(k)$2):
seq(seq(A(n, d-n), n=0..d), d=0..10);
# second Maple program:
b:= proc(n) option remember; `if`(n=0, 1,
add(b(n-j)*binomial(n-1, j-1), j=1..n))
end:
A:= proc(n, k) option remember; `if`(n
-
b[n_] := b[n] = If[n == 0, 1, Sum[b[n-j] Binomial[n-1, j-1], {j, 1, n}]];
A[n_, k_] := A[n, k] = If[n < k, A[k, n],
If[k == 0, b[n], (A[n + 1, k - 1] + Sum[A[n - k + j, j]*
Binomial[k - 1, j], {j, 0, k - 1}] + A[n, k - 1])/2]];
Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Aug 18 2021, after Alois P. Heinz's second program *)
A322765
Array read by upwards antidiagonals: T(m,n) = number of set partitions of the multiset consisting of one copy each of x_1, x_2, ..., x_m, and two copies each of y_1, y_2, ..., y_n, for m >= 0, n >= 0.
Original entry on oeis.org
1, 1, 2, 2, 4, 9, 5, 11, 26, 66, 15, 36, 92, 249, 712, 52, 135, 371, 1075, 3274, 10457, 203, 566, 1663, 5133, 16601, 56135, 198091, 877, 2610, 8155, 26683, 91226, 325269, 1207433, 4659138, 4140, 13082, 43263, 149410, 537813, 2014321, 7837862, 31638625, 132315780
Offset: 0
The array begins:
1, 2, 9, 66, 712, 10457, 198091, ...
1, 4, 26, 249, 3274, 56135, 1207433, ...
2, 11, 92, 1075, 16601, 325269, 7837862, ...
5, 36, 371, 5133, 91226, 2014321, 53840640, ...
15, 135, 1663, 26683, 537813, 13241402, 389498179, ...
52, 566, 8155, 149410, 3376696, 91914202, 2955909119, ...
203, 2610, 43263, 894124, 22451030, 670867539, 23456071495, ...
...
- D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, page 778.
See
A322770 for partitions into distinct parts.
-
B := n -> combinat[bell](n):
P := proc(m,n) local k; global B; option remember;
if n = 0 then B(m) else
(1/2)*( P(m+2,n-1) + P(m+1,n-1) + add( binomial(n-1,k)*P(m,k), k=0..n-1) ); fi; end; # P(m,n) (which is Knuth's notation) is T(m,n)
-
P[m_, n_] := P[m, n] = If[n == 0, BellB[m], (1/2)(P[m+2, n-1] + P[m+1, n-1] + Sum[Binomial[n-1, k] P[m, k], {k, 0, n-1}])];
Table[P[m-n, n], {m, 0, 8}, {n, 0, m}] // Flatten (* Jean-François Alcover, Jan 02 2019, from Maple *)
-
{T(n, k) = if(k==0, sum(j=0, n, stirling(n, j, 2)), (T(n+2, k-1)+T(n+1, k-1)+sum(j=0, k-1, binomial(k-1, j)*T(n, j)))/2)} \\ Seiichi Manyama, Nov 21 2020
Original entry on oeis.org
5, 18, 70, 299, 1393, 7023, 38043, 220054, 1352082, 8784991, 60125371, 432001747, 3248914361, 25508188118, 208592396802, 1772921926183, 15632838989393, 142759592985079, 1348095912827295, 13145321614286610, 132188675368994446, 1369216940917868547
Offset: 0
Showing 1-4 of 4 results.
Comments