cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322784 Number of multiset partitions of uniform multisets of size n whose union is an initial interval of positive integers.

Original entry on oeis.org

1, 1, 4, 8, 29, 59, 311, 892, 4983, 21863, 126813, 678626, 4446565, 27644538, 195561593, 1384705697, 10613378402, 82864870101, 686673571479, 5832742205547, 51897707277698, 474889512098459, 4514467567213008, 44152005855085601, 446355422070799305, 4638590359349994120
Offset: 0

Views

Author

Gus Wiseman, Dec 26 2018

Keywords

Comments

A multiset is uniform if all multiplicities are equal.
Also the number of factorizations into factors > 1 of primorial powers k in A100778 with sum of prime indices A056239(k) equal to n.
a(n) is the number of nonequivalent nonnegative integer matrices without zero rows or columns with equal column sums and total sum n up to permutation of rows. - Andrew Howroyd, Jan 11 2020

Examples

			The a(1) = 1 through a(4) = 29 multiset partitions:
  {{1}}   {{1,1}}     {{1,1,1}}       {{1,1,1,1}}
          {{1,2}}     {{1,2,3}}       {{1,1,2,2}}
         {{1},{1}}   {{1},{1,1}}      {{1,2,3,4}}
         {{1},{2}}   {{1},{2,3}}     {{1},{1,1,1}}
                     {{2},{1,3}}     {{1,1},{1,1}}
                     {{3},{1,2}}     {{1},{1,2,2}}
                    {{1},{1},{1}}    {{1,1},{2,2}}
                    {{1},{2},{3}}    {{1,2},{1,2}}
                                     {{1},{2,3,4}}
                                     {{1,2},{3,4}}
                                     {{1,3},{2,4}}
                                     {{1,4},{2,3}}
                                     {{2},{1,1,2}}
                                     {{2},{1,3,4}}
                                     {{3},{1,2,4}}
                                     {{4},{1,2,3}}
                                    {{1},{1},{1,1}}
                                    {{1},{1},{2,2}}
                                    {{1},{2},{1,2}}
                                    {{1},{2},{3,4}}
                                    {{1},{3},{2,4}}
                                    {{1},{4},{2,3}}
                                    {{2},{2},{1,1}}
                                    {{2},{3},{1,4}}
                                    {{2},{4},{1,3}}
                                    {{3},{4},{1,2}}
                                   {{1},{1},{1},{1}}
                                   {{1},{1},{2},{2}}
                                   {{1},{2},{3},{4}}
		

Crossrefs

Programs

  • Mathematica
    u[n_,k_]:=u[n,k]=If[n==1,1,Sum[u[n/d,d],{d,Select[Rest[Divisors[n]],#<=k&]}]];
    Table[Sum[u[Array[Prime,d,1,Times]^(n/d),Array[Prime,d,1,Times]^(n/d)],{d,Divisors[n]}],{n,12}]

Formula

a(n) = Sum_{d|n} A001055(A002110(n/d)^d).
a(n) = Sum_{d|n} A219727(n/d, d). - Andrew Howroyd, Jan 11 2020

Extensions

a(14)-a(15) from Alois P. Heinz, Jan 16 2019
Terms a(16) and beyond from Andrew Howroyd, Jan 11 2020