A322796 a(n) = Kronecker symbol (6/n).
0, 1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0
Offset: 0
Links
- Antti Karttunen, Table of n, a(n) for n = 0..65543
- Eric Weisstein's World of Mathematics, Kronecker Symbol (contains this sequence)
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,1,0,0,0,-1).
Crossrefs
Cf. A035188 (inverse Moebius transform).
Kronecker symbols {(d/n)} where d is a fundamental discriminant with |d| <= 24: A109017 (d=-24), A011586 (d=-23), A289741 (d=-20), A011585 (d=-19), A316569 (d=-15), A011582 (d=-11), A188510 (d=-8), A175629 (d=-7), A101455 (d=-4), A102283 (d=-3), A080891 (d=5), A091337 (d=8), A110161 (d=12), A011583 (d=13), A011584 (d=17), A322829 (d=21), this sequence (d=24).
Programs
-
Magma
[KroneckerSymbol(6, n): n in [0..100]]; // Vincenzo Librandi, Jan 01 2019
-
Mathematica
Array[KroneckerSymbol[6, #] &, 105, 0] (* Michael De Vlieger, Dec 31 2018 *) Table[KroneckerSymbol[6, n], {n, 0, 100}] (* Vincenzo Librandi, Jan 01 2019 *)
-
PARI
a(n) = kronecker(6, n); \\ --- Argument order corrected by Antti Karttunen, Sep 27 2019
Formula
Extensions
Definition corrected by Antti Karttunen, Sep 28 2019
Comments