A322798 Number of compositions (ordered partitions) of n into hexagonal numbers (A000384).
1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 9, 12, 16, 22, 29, 37, 47, 60, 77, 101, 133, 174, 226, 292, 376, 486, 632, 823, 1072, 1394, 1808, 2342, 3036, 3939, 5116, 6648, 8636, 11211, 14548, 18875, 24493, 31795, 41283, 53604, 69594, 90338, 117251, 152184, 197540
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..8828
- Eric Weisstein's World of Mathematics, Hexagonal Number
- Index entries for sequences related to compositions
Programs
-
Maple
h:= proc(n) option remember; `if`(n<1, 0, (t-> `if`(t*(2*t-1)>n, t-1, t))(1+h(n-1))) end: a:= proc(n) option remember; `if`(n=0, 1, add(a(n-i*(2*i-1)), i=1..h(n))) end: seq(a(n), n=0..60); # Alois P. Heinz, Dec 28 2018
-
Mathematica
nmax = 50; CoefficientList[Series[1/(1 - Sum[x^(k (2 k - 1)), {k, 1, nmax}]), {x, 0, nmax}], x]
Formula
G.f.: 1/(1 - Sum_{k>=1} x^(k*(2*k-1))).