A322800 Number of compositions (ordered partitions) of n into octagonal numbers (A000567).
1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 18, 23, 29, 37, 46, 56, 68, 83, 102, 126, 156, 195, 244, 304, 377, 466, 575, 709, 874, 1080, 1338, 1660, 2061, 2557, 3170, 3926, 4857, 6006, 7428, 9191, 11380, 14096, 17465, 21640, 26807, 33197, 41099
Offset: 0
Keywords
Links
- Eric Weisstein's World of Mathematics, Octagonal Number
- Index entries for sequences related to compositions
Programs
-
Maple
h:= proc(n) option remember; `if`(n<1, 0, (t-> `if`(t*(3*t-2)>n, t-1, t))(1+h(n-1))) end: a:= proc(n) option remember; `if`(n=0, 1, add(a(n-i*(3*i-2)), i=1..h(n))) end: seq(a(n), n=0..60); # Alois P. Heinz, Dec 28 2018
-
Mathematica
nmax = 54; CoefficientList[Series[1/(1 - Sum[x^(k (3 k - 2)), {k, 1, nmax}]), {x, 0, nmax}], x]
Formula
G.f.: 1/(1 - Sum_{k>=1} x^(k*(3*k-2))).