A322801 Number of compositions (ordered partitions) of n into centered pentagonal numbers (A005891).
1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 9, 12, 16, 21, 28, 36, 46, 59, 76, 98, 128, 167, 217, 281, 363, 468, 605, 784, 1017, 1320, 1712, 2217, 2869, 3713, 4807, 6227, 8070, 10458, 13549, 17549, 22726, 29430, 38117, 49375, 63962, 82859, 107333, 139026, 180071
Offset: 0
Keywords
Links
- Eric Weisstein's World of Mathematics, Centered Pentagonal Number
- Index entries for sequences related to compositions
Programs
-
Maple
h:= proc(n) option remember; `if`(n<0, 0, (t-> `if`(((t+1)*5*t+2)/2>n, t-1, t))(1+h(n-1))) end: a:= proc(n) option remember; `if`(n=0, 1, add(a(n-((i+1)*5*i+2)/2), i=0..h(n))) end: seq(a(n), n=0..60); # Alois P. Heinz, Dec 28 2018
-
Mathematica
nmax = 50; CoefficientList[Series[1/(1 - Sum[x^(5 k (k + 1)/2 + 1), {k, 0, nmax}]), {x, 0, nmax}], x]
Formula
G.f.: 1/(1 - Sum_{k>=0} x^(5*k*(k+1)/2+1)).