A322802 Number of compositions (ordered partitions) of n into centered hexagonal numbers (A003215).
1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 10, 13, 17, 22, 28, 36, 45, 56, 70, 88, 111, 140, 178, 226, 286, 361, 455, 573, 721, 909, 1148, 1451, 1834, 2318, 2928, 3695, 4661, 5880, 7420, 9366, 11826, 14935, 18860, 23812, 30059, 37941, 47888, 60445, 76302, 96327
Offset: 0
Keywords
Links
- Eric Weisstein's World of Mathematics, Hex Number
- Index entries for sequences related to compositions
Programs
-
Maple
h:= proc(n) option remember; `if`(n<0, 0, (t-> `if`(3*t*(t+1)+1>n, t-1, t))(1+h(n-1))) end: a:= proc(n) option remember; `if`(n=0, 1, add(a(n-(3*i*(i+1)+1)), i=0..h(n))) end: seq(a(n), n=0..60); # Alois P. Heinz, Dec 28 2018
-
Mathematica
nmax = 53; CoefficientList[Series[1/(1 - Sum[x^(3 k (k + 1) + 1), {k, 0, nmax}]), {x, 0, nmax}], x]
Formula
G.f.: 1/(1 - Sum_{k>=0} x^(3*k*(k+1)+1)).