A322803 Number of compositions (ordered partitions) of n into centered heptagonal numbers (A069099).
1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 18, 23, 29, 36, 45, 55, 67, 82, 101, 125, 155, 192, 239, 297, 368, 455, 562, 694, 857, 1058, 1308, 1619, 2005, 2483, 3074, 3805, 4708, 5822, 7198, 8900, 11007, 13616, 16846, 20845, 25795, 31918, 39489
Offset: 0
Keywords
Programs
-
Maple
h:= proc(n) option remember; `if`(n<1, 0, (t-> `if`((7*(t-1)*t+2)/2>n, t-1, t))(1+h(n-1))) end: a:= proc(n) option remember; `if`(n=0, 1, add(a(n-(7*(i-1)*i+2)/2), i=1..h(n))) end: seq(a(n), n=0..60); # Alois P. Heinz, Dec 28 2018
-
Mathematica
nmax = 54; CoefficientList[Series[1/(1 - Sum[x^(7 k (k + 1)/2 + 1), {k, 0, nmax}]), {x, 0, nmax}], x]
Formula
G.f.: 1/(1 - Sum_{k>=0} x^(7*k*(k+1)/2+1)).