cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322890 a(n) = value of Chebyshev T-polynomial T_n(20).

Original entry on oeis.org

1, 20, 799, 31940, 1276801, 51040100, 2040327199, 81562047860, 3260441587201, 130336101440180, 5210183616019999, 208277008539359780, 8325870157958371201, 332826529309795488260, 13304735302233861159199, 531856585560044650879700
Offset: 0

Views

Author

Seiichi Manyama, Dec 29 2018

Keywords

Crossrefs

Column 20 of A322836.
Cf. A041758.

Programs

  • GAP
    a:=[1,20];; for n in [3..20] do a[n]:=40*a[n-1]-a[n-2]; od; Print(a); # Muniru A Asiru, Dec 31 2018
  • Maple
    seq(coeff(series((1-20*x)/(1-40*x+x^2),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Dec 31 2018
  • Mathematica
    CoefficientList[Series[(1 - 20 x)/(1 - 40 x + x^2), {x, 0, 15}], x] (* or *)
    Array[ChebyshevT[#, 20] &, 16, 0] (* Michael De Vlieger, Jan 01 2019 *)
  • PARI
    {a(n) = polchebyshev(n, 1, 20)}
    
  • PARI
    Vec((1 - 20*x) / (1 - 40*x + x^2) + O(x^20)) \\ Colin Barker, Dec 30 2018
    

Formula

a(0) = 1, a(1) = 20 and a(n) = 40*a(n-1) - a(n-2) for n > 1.
From Colin Barker, Dec 30 2018: (Start)
G.f.: (1 - 20*x) / (1 - 40*x + x^2).
a(n) = ((20+sqrt(399))^(-n) * (1+(20+sqrt(399))^(2*n))) / 2.
(End)