cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A322894 a(n) = A322893(n) / (n*(n+1)/2), where A322893(n) = [x^(n-1)] Product_{k=1..n} (k + x + 2*k*x^2), for n >= 1.

Original entry on oeis.org

1, 1, 7, 31, 411, 3571, 69581, 927837, 23794485, 433057989, 13747956267, 319028238387, 12059110543767, 341371258373471, 14956914818390169, 500785356155724985, 24937841088996528425, 965337309260747987273, 53822060004016654090607, 2367108984768411034367975, 146026942863362312725861811, 7196976785684064477225272171, 486563915009872154819986680357
Offset: 1

Views

Author

Paul D. Hanna, Dec 29 2018

Keywords

Examples

			The irregular triangle A322891 of coefficients of x^k in Product_{m=1..n} (m + x + 2*m*x^2), for n >= 0, k = 0..2*n, begins
1;
1, 1, 2;
2, 3, 9, 6, 8;
6, 11, 42, 45, 84, 44, 48;
24, 50, 227, 310, 717, 620, 908, 400, 384;
120, 274, 1425, 2277, 6165, 6917, 12330, 9108, 11400, 4384, 3840;
720, 1764, 10264, 18375, 56367, 74991, 154877, 149982, 225468, 147000, 164224, 56448, 46080; ...
Note that the terms in the secondary diagonal A322893 in the above triangle,
[1, 3, 42, 310, 6165, 74991, 1948268, 33402132, 1070751825, ...],
may be divided by triangular numbers n*(n+1)/2 to obtain this sequence:
[1, 1, 7, 31, 411, 3571, 69581, 927837, 23794485, 433057989, ...].
		

Crossrefs

Cf. A322226 (variant), A322236 (variant).

Programs

  • PARI
    {A322891(n, k) = polcoeff( prod(m=1, n, m + x + 2*m*x^2) +x*O(x^k), k)}
    /* Print the irregular triangle */
    for(n=0, 10, for(k=0, 2*n, print1( A322891(n, k), ", ")); print(""))
    /* Print this sequence */
    for(n=1, 30, print1( A322891(n, n-1)/(n*(n+1)/2), ", "))

Formula

a(n) = A322891(n, n-1) / (n*(n+1)/2).
a(n) = A322891(n, n+1) / (n*(n+1)).
a(n) appears to be odd for n >= 0.

A322891 Triangle, read by rows, each row n being defined by g.f. Product_{k=1..n} (k + x + 2*k*x^2), for n >= 0.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 9, 6, 8, 6, 11, 42, 45, 84, 44, 48, 24, 50, 227, 310, 717, 620, 908, 400, 384, 120, 274, 1425, 2277, 6165, 6917, 12330, 9108, 11400, 4384, 3840, 720, 1764, 10264, 18375, 56367, 74991, 154877, 149982, 225468, 147000, 164224, 56448, 46080, 5040, 13068, 83692, 163585, 556640, 838554, 1948268, 2254625, 3896536, 3354216, 4453120, 2617360, 2678144, 836352, 645120, 40320, 109584, 763244, 1601460, 5955777, 9882432, 25330938, 33402132, 64599201, 66804264, 101323752, 79059456, 95292432, 51246720, 48847616, 14026752, 10321920
Offset: 0

Views

Author

Paul D. Hanna, Dec 29 2018

Keywords

Comments

Row sums equal A007559(n+1), the triple factorial numbers.

Examples

			This irregular triangle of coefficients T(n,k) of x^k in Product_{m=1..n} (m + x + 2*m*x^2), for n >= 0, k = 0..2*n, begins
1;
1, 1, 2;
2, 3, 9, 6, 8;
6, 11, 42, 45, 84, 44, 48;
24, 50, 227, 310, 717, 620, 908, 400, 384;
120, 274, 1425, 2277, 6165, 6917, 12330, 9108, 11400, 4384, 3840;
720, 1764, 10264, 18375, 56367, 74991, 154877, 149982, 225468, 147000, 164224, 56448, 46080;
5040, 13068, 83692, 163585, 556640, 838554, 1948268, 2254625, 3896536, 3354216, 4453120, 2617360, 2678144, 836352, 645120;
40320, 109584, 763244, 1601460, 5955777, 9882432, 25330938, 33402132, 64599201, 66804264, 101323752, 79059456, 95292432, 51246720, 48847616, 14026752, 10321920; ...
in which the central terms equal A322892:
[1, 1, 9, 45, 717, 6917, 154877, 2254625, 64599201, 1267075953, ...].
RELATED SEQUENCES.
Note that the terms in the secondary diagonal A322893 in this triangle,
[1, 3, 42, 310, 6165, 74991, 1948268, 33402132, 1070751825, ...],
may be divided by triangular numbers n*(n+1)/2 to obtain A322894:
[1, 1, 7, 31, 411, 3571, 69581, 927837, 23794485, 433057989, ...].
		

Crossrefs

Cf. A322892 (central terms), A322893 (diagonal), A322894.
Cf. A322235 (variant), A322225 (variant), A000165, A007559.

Programs

  • PARI
    {T(n, k) = polcoeff( prod(m=1, n, m + x + 2*m*x^2) +x*O(x^k), k)}
    /* Print the irregular triangle */
    for(n=0, 10, for(k=0, 2*n, print1( T(n, k), ", ")); print(""))

Formula

T(n,0) = n! for n >= 0.
T(n,2*n) = 2^n * n!, the even double factorials, for n >= 0.
Sum_{k=0..2*n} T(n,k) = Product_{k=0..n} (3*k + 1), the triple factorials, for n >= 0.

A322892 a(n) = [x^n] Product_{k=1..n} (k + x + 2*k*x^2), for n >= 0.

Original entry on oeis.org

1, 1, 9, 45, 717, 6917, 154877, 2254625, 64599201, 1267075953, 44097148953, 1092097482333, 44645622936189, 1338624157833861, 62791851488870493, 2213430779241737793, 117082536584478235713, 4748345510312622896993, 279463602946698380026793, 12824987274099379222626701, 830920299335152521399853101, 42586722790649923167650932101, 3011022417317079016258969826109, 170527854080899363788154404878305
Offset: 0

Views

Author

Paul D. Hanna, Dec 29 2018

Keywords

Examples

			The irregular triangle A322891 of coefficients of x^k in Product_{m=1..n} (m + x + 2*m*x^2), for n >= 0, k = 0..2*n, begins
1;
1, 1, 2;
2, 3, 9, 6, 8;
6, 11, 42, 45, 84, 44, 48;
24, 50, 227, 310, 717, 620, 908, 400, 384;
120, 274, 1425, 2277, 6165, 6917, 12330, 9108, 11400, 4384, 3840;
720, 1764, 10264, 18375, 56367, 74991, 154877, 149982, 225468, 147000, 164224, 56448, 46080; ...
in which the main diagonal forms this sequence.
Note that the terms in the secondary diagonal A322893 in the above triangle
[1, 3, 42, 310, 6165, 74991, 1948268, 33402132, 1070751825, ...]
may be divided by triangular numbers n*(n+1)/2 to obtain A322894:
[1, 1, 7, 31, 411, 3571, 69581, 927837, 23794485, 433057989, ...].
		

Crossrefs

Cf. A322238 (variant).

Programs

  • PARI
    {A322891(n, k) = polcoeff( prod(m=1, n, m + x + 2*m*x^2) +x*O(x^k), k)}
    /* Print the irregular triangle */
    for(n=0, 10, for(k=0, 2*n, print1( A322891(n, k), ", ")); print(""))
    /* Print this sequence */
    for(n=0, 30, print1( A322891(n, n), ", "))

Formula

a(n+1) = 4*(n+1) * A322893(n) + a(n), for n >= 1.
a(n+1) = 2*n*(n+1)^2 * A322894(n) + a(n), for n >= 1.
Showing 1-3 of 3 results.