A322899 a(n) = T_{2*n}(n+1) where T_{n}(x) is a Chebyshev polynomial of the first kind.
1, 7, 577, 119071, 46099201, 28860511751, 26650854921601, 34100354867927167, 57780789062419261441, 125283240358674708816199, 338393251269110482793304001, 1114259437504123772777608493087, 4394174409561746573589926449440001
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..193
- Wikipedia, Chebyshev polynomials.
- Index entries for sequences related to Chebyshev polynomials.
Crossrefs
Diagonal of A188644.
Programs
-
Mathematica
a[n_] := ChebyshevT[2n, n+1]; Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Jan 02 2019 *)
-
PARI
{a(n) = polchebyshev(2*n, 1, n+1)}
-
PARI
{a(n) = sum(k=0, n, binomial(2*n, 2*k)*(n^2+2*n)^(n-k)*(n+1)^(2*k))}
Formula
a(n) = T_{n}(2*n^2+4*n+1).
a(n) = Sum_{k=0..n} binomial(2*n,2*k)*(n^2+2*n)^(n-k)*(n+1)^(2*k).
a(n) ~ exp(2) * 2^(2*n-1) * n^(2*n). - Vaclav Kotesovec, Apr 15 2020