cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A188644 Array of (k^n + k^(-n))/2 where k = (sqrt(x^2-1) + x)^2 for integers x >= 1.

Original entry on oeis.org

1, 1, 1, 1, 7, 1, 1, 97, 17, 1, 1, 1351, 577, 31, 1, 1, 18817, 19601, 1921, 49, 1, 1, 262087, 665857, 119071, 4801, 71, 1, 1, 3650401, 22619537, 7380481, 470449, 10081, 97, 1, 1, 50843527, 768398401, 457470751, 46099201, 1431431, 18817, 127, 1
Offset: 0

Views

Author

Charles L. Hohn, Apr 06 2011

Keywords

Comments

Conjecture: Given the function f(x,y) = (sqrt(x^2+y) + x)^2 and constant k=f(x,y), then for all integers x >= 1 and y=[+-]1, k may be irrational, but (k^n + k^(-n))/2 always produces integer sequences; y=-1 results shown here; y=1 results are A188645.
Also square array A(n,k), n >= 1, k >= 0, read by antidiagonals, where A(n,k) is Chebyshev polynomial of the first kind T_{2*k}(x), evaluated at x=n. - Seiichi Manyama, Dec 30 2018

Examples

			Row 2 gives {( (2+sqrt(3))^(2*n) + (2-sqrt(3))^(2*n) )/2}.
Square array begins:
     | 0    1       2          3             4
-----+---------------------------------------------
   1 | 1,   1,      1,         1,            1, ...
   2 | 1,   7,     97,      1351,        18817, ...
   3 | 1,  17,    577,     19601,       665857, ...
   4 | 1,  31,   1921,    119071,      7380481, ...
   5 | 1,  49,   4801,    470449,     46099201, ...
   6 | 1,  71,  10081,   1431431,    203253121, ...
   7 | 1,  97,  18817,   3650401,    708158977, ...
   8 | 1, 127,  32257,   8193151,   2081028097, ...
   9 | 1, 161,  51841,  16692641,   5374978561, ...
  10 | 1, 199,  79201,  31521799,  12545596801, ...
  11 | 1, 241, 116161,  55989361,  26986755841, ...
  12 | 1, 287, 164737,  94558751,  54276558337, ...
  13 | 1, 337, 227137, 153090001, 103182433537, ...
  14 | 1, 391, 305761, 239104711, 186979578241, ...
  15 | 1, 449, 403201, 362074049, 325142092801, ...
  ...
		

Crossrefs

Row 2 is A011943, row 3 is A056771, row 8 is A175633, (row 2)*2 is A067902, (row 9)*2 is A089775.
(column 1)*2 is A060626.
Cf. A188645 (f(x, y) as above with y=1).
Diagonals give A173129, A322899.

Programs

  • Mathematica
    max = 9; y = -1; t = Table[k = ((x^2 + y)^(1/2) + x)^2; ((k^n) + (k^(-n)))/2 // FullSimplify, {n, 0, max - 1}, {x, 1, max}]; Table[ t[[n - k + 1, k]], {n, 1, max}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 17 2013 *)

Formula

A(n,k) = (A188646(n,k-1) + A188646(n,k))/2.
A(n,k) = Sum_{j=0..k} binomial(2*k,2*j)*(n^2-1)^(k-j)*n^(2*j). - Seiichi Manyama, Jan 01 2019

Extensions

Edited by Seiichi Manyama, Dec 30 2018
More terms from Seiichi Manyama, Jan 01 2019
Showing 1-1 of 1 results.