A322908 The determinant of an n X n Toeplitz matrix M(n) whose first row consists of successive positive integer numbers 1, ..., n and whose first column consists of 1, n + 1, ..., 2*n - 1.
1, -5, 38, -386, 4928, -75927, 1371808, -28452356, 666445568, -17402398505, 501297595904, -15792876550662, 540190822408192, -19937252888438459, 789770307546718208, -33422580292067020808, 1504926927960887066624, -71839548181524098808909, 3624029163661165580910592
Offset: 1
Keywords
Examples
For n = 1 the matrix M(1) is 1 with determinant Det(M(1)) = 1. For n = 2 the matrix M(2) is 1, 2 3, 1 with Det(M(2)) = -5. For n = 3 the matrix M(3) is 1, 2, 3 4, 1, 2 5, 4, 1 with Det(M(3)) = 38.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..300
- Wikipedia, Toeplitz Matrix
Programs
-
Maple
a:= proc(n) uses LinearAlgebra; Determinant(ToeplitzMatrix([seq(i, i=2*n-1..n+1, -1), seq(i, i=1..n)])) end proc: map(a, [$1..20]);
-
Mathematica
b[n_]:=n; a[n_]:=Det[ToeplitzMatrix[Join[{b[1]}, Array[b, n-1, {n+1, 2*n-1}]], Array[b, n]]]; Array[a, 20]
-
PARI
tm(n) = {my(m = matrix(n, n, i, j, if (i==1, j, if (j==1, n+i-1)))); for (i=2, n, for (j=2, n, m[i, j] = m[i-1, j-1]; ); ); m; } a(n) = matdet(tm(n)); \\ Michel Marcus, Nov 11 2020
Formula
a(n) ~ -(-1)^n * (3*exp(1) - exp(-1)) * n^n / 4. - Vaclav Kotesovec, Jan 05 2019
Comments