A322908
The determinant of an n X n Toeplitz matrix M(n) whose first row consists of successive positive integer numbers 1, ..., n and whose first column consists of 1, n + 1, ..., 2*n - 1.
Original entry on oeis.org
1, -5, 38, -386, 4928, -75927, 1371808, -28452356, 666445568, -17402398505, 501297595904, -15792876550662, 540190822408192, -19937252888438459, 789770307546718208, -33422580292067020808, 1504926927960887066624, -71839548181524098808909, 3624029163661165580910592
Offset: 1
For n = 1 the matrix M(1) is
1
with determinant Det(M(1)) = 1.
For n = 2 the matrix M(2) is
1, 2
3, 1
with Det(M(2)) = -5.
For n = 3 the matrix M(3) is
1, 2, 3
4, 1, 2
5, 4, 1
with Det(M(3)) = 38.
Cf.
A322909 (permanent of matrix M(n)).
-
a:= proc(n) uses LinearAlgebra;
Determinant(ToeplitzMatrix([seq(i, i=2*n-1..n+1, -1), seq(i, i=1..n)]))
end proc:
map(a, [$1..20]);
-
b[n_]:=n; a[n_]:=Det[ToeplitzMatrix[Join[{b[1]}, Array[b, n-1, {n+1, 2*n-1}]], Array[b, n]]]; Array[a, 20]
-
tm(n) = {my(m = matrix(n, n, i, j, if (i==1, j, if (j==1, n+i-1)))); for (i=2, n, for (j=2, n, m[i, j] = m[i-1, j-1]; ); ); m; }
a(n) = matdet(tm(n)); \\ Michel Marcus, Nov 11 2020
A323254
The determinant of an n X n Toeplitz matrix M(n) whose first row consists of successive positive integer numbers 2*n - 1, n - 1, ..., 1 and whose first column consists of 2*n - 1, 2*n - 2, ..., n.
Original entry on oeis.org
1, 7, 58, 614, 8032, 125757, 2298208, 48075148, 1133554432, 29756555315, 860884417024, 27218972906226, 933850899349504, 34556209025624041, 1371957513591119872, 58174957356247084568, 2624017129323317493760, 125454378698728779884895, 6337442836338834419089408
Offset: 1
For n = 1 the matrix M(1) is
1
with determinant Det(M(1)) = 1.
For n = 2 the matrix M(2) is
3, 1
2, 3
with Det(M(2)) = 7.
For n = 3 the matrix M(3) is
5, 2, 1
4, 5, 2
3, 4, 5
with Det(M(3)) = 58.
Cf.
A323255 (permanent of matrix M(n)).
-
b[i_]:=i; a[n_]:=Det[ToeplitzMatrix[Join[{b[2*n-1]}, Array[b, n-1, {2*n-2,n}]], Join[{b[2*n-1]},Array[b, n-1, {n-1,1}]]]]; Array[a,20]
-
tm(n) = {my(m = matrix(n, n, i, j, if (j==1, 2*n-i, n-j+1))); for (i=2, n, for (j=2, n, m[i, j] = m[i-1, j-1]; ); ); m;}
a(n) = matdet(tm(n)); \\ Stefano Spezia, Dec 11 2019
A323255
The permanent of an n X n Toeplitz matrix M(n) whose first row consists of successive positive integer numbers 2*n - 1, n - 1, ..., 1 and whose first column consists of 2*n - 1, 2*n - 2, ..., n.
Original entry on oeis.org
1, 1, 11, 248, 9968, 638772, 60061657, 7798036000, 1336715859150, 292406145227392, 79483340339739367, 26280500564448081664, 10386012861097225139356, 4834639222955142417477888, 2618110215141486526589786501, 1631888040186649673361825042432, 1159983453675106278249250918734938
Offset: 0
For n = 1 the matrix M(1) is
1
with permanent a(1) = 1.
For n = 2 the matrix M(2) is
3, 1
2, 3
with permanent a(2) = 11.
For n = 3 the matrix M(3) is
5, 2, 1
4, 5, 2
3, 4, 5
with permanent a(3) = 248.
Cf.
A323254 (determinant of matrix M(n)).
-
b[i_]:=i; a[n_]:=If[n==0, 1, Permanent[ToeplitzMatrix[Join[{b[2*n-1]}, Array[b, n-1, {2*n-2,n }]], Join[{b[2*n-1]},Array[b, n-1, {n-1,1}]]]]]; Array[a, 16, 0]
-
tm(n) = {my(m = matrix(n, n, i, j, if (j==1, 2*n-i, n-j+1))); for (i=2, n, for (j=2, n, m[i, j] = m[i-1, j-1]; ); ); m;}
a(n) = matpermanent(tm(n)); \\ Stefano Spezia, Dec 11 2019
Showing 1-3 of 3 results.
Comments