cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322921 From Goldbach's conjecture: a(n) is the number of decompositions of 6n into a sum of two primes.

Original entry on oeis.org

1, 1, 2, 3, 3, 4, 4, 5, 5, 6, 6, 6, 7, 8, 9, 7, 8, 8, 10, 12, 10, 9, 8, 11, 12, 11, 10, 13, 11, 14, 13, 11, 13, 14, 19, 13, 11, 12, 15, 18, 16, 16, 14, 16, 19, 16, 16, 17, 19, 21, 15, 17, 15, 20, 24, 19, 17, 16, 20, 22, 18, 18, 22, 19, 27, 21, 17, 20, 21, 30
Offset: 1

Views

Author

Pedro Caceres, Dec 30 2018

Keywords

Comments

According to Goldbach's conjecture all even numbers can be decomposed into one or more sums of two prime numbers.
Each even number N belongs to one of the following sets: {N == 0 (mod 6)}, {(N + 2) == 0 (mod 6)}, and {(N - 2) == 0 (mod 6)}.
Conjecture: In any combination of three consecutive even numbers >= 48, the one of the form N == 0 (mod 6) will have the largest number of decompositions into 2 prime numbers. This sequence contains those local maxima for every set of three consecutive even numbers. This sequence forms the upper envelope of Goldbach's comet chart.

Examples

			a(1) = 1 because 6 * 1 = 6 can be decomposed as (3 + 3);
a(8) = 5 is the number of ways that 6 * 8 = 48 can be decomposed into sums of two prime numbers: 5 + 43, 11 + 37, 17 + 31, 29 + 19, 41 + 7.
		

Crossrefs

Programs

Formula

a(n) = A002375(3*n).