cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322931 Digits of the 8-adic integer 3^(1/3).

Original entry on oeis.org

3, 7, 5, 0, 7, 3, 0, 1, 7, 1, 7, 6, 4, 2, 3, 6, 7, 7, 7, 0, 3, 1, 2, 0, 1, 7, 2, 6, 1, 2, 5, 4, 1, 1, 1, 2, 3, 5, 5, 2, 3, 5, 4, 7, 3, 6, 0, 0, 3, 4, 7, 1, 3, 3, 6, 4, 6, 0, 0, 4, 4, 6, 0, 5, 6, 4, 1, 5, 5, 6, 0, 0, 0, 6, 2, 6, 1, 0, 7, 1, 6, 0, 0, 4, 6, 5, 0, 7, 0, 1, 3, 7, 3, 7, 0, 0, 2, 0, 6, 1
Offset: 0

Views

Author

Patrick A. Thomas, Dec 31 2018

Keywords

Comments

The octal version of A225404.

Examples

			4671710370573^3 == 3 (mod 8^13) in octal.
		

Crossrefs

Cf. A225404 (decimal version), A290563, A309698, A322932, A322933.

Programs

  • PARI
    N=100; Vecrev(digits(lift((3+O(2^(3*N)))^(1/3)), 8), N) \\ Seiichi Manyama, Aug 14 2019
    
  • Ruby
    def A322931(n)
      ary = [3]
      a = 3
      n.times{|i|
        b = (a + 5 * (a ** 3 - 3)) % (8 ** (i + 2))
        ary << (b - a) / (8 ** (i + 1))
        a = b
      }
      ary
    end
    p A322931(100) # Seiichi Manyama, Aug 14 2019

Formula

Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 3, b(n) = b(n-1) + 5 * (b(n-1)^3 - 3) mod 8^n for n > 1, then a(n) = (b(n+1) - b(n))/8^n. - Seiichi Manyama, Aug 14 2019