A322965 Numerator of Sum_{d | n} 1/rad(d).
1, 3, 4, 2, 6, 2, 8, 5, 5, 9, 12, 8, 14, 12, 8, 3, 18, 5, 20, 12, 32, 18, 24, 10, 7, 21, 2, 16, 30, 12, 32, 7, 16, 27, 48, 10, 38, 30, 56, 3, 42, 16, 44, 24, 2, 36, 48, 4, 9, 21, 24, 28, 54, 3, 72, 20, 80, 45, 60, 16, 62, 48, 40, 4, 84, 24, 68, 36, 32, 72, 72, 25, 74, 57, 28
Offset: 1
Examples
The divisors of 12 are 1,2,3,4,6,12, so f(12) = 1 + (1/2) + (1/3) + (1/2) + (1/6) + (1/6) = 8/3 and a(12) = 8. Alternately, since f is multiplicative, f(12) = f(4)*f(3) = (1+2/2)*(1+1/3) = 8/3.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
rad:= n -> convert(numtheory:-factorset(n),`*`): f:= proc(n) numer(add(1/rad(d),d=numtheory:-divisors(n))) end proc: map(f, [$1..100]); # Robert Israel, Jan 25 2019
-
Mathematica
Array[Numerator@ DivisorSum[#, 1/Apply[Times, FactorInteger[#][[All, 1]]] &] &, 71] (* Michael De Vlieger, Jan 19 2019 *)
-
PARI
rad(n) = factorback(factor(n)[, 1]); \\ A007947 a(n) = numerator(sumdiv(n, d, 1/rad(d))); \\ Michel Marcus, Jan 10 2019
Formula
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A322966(k) = zeta(2)*zeta(3)/zeta(6) (A082695). - Amiram Eldar, Dec 09 2023
Extensions
More terms from Michel Marcus, Jan 19 2019
Comments