A322986 Number of distinct values obtained when the pi-based arithmetic derivative (A258851) is applied to the divisors of n.
1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 5, 2, 8, 2, 6, 4, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 10, 3, 6, 4, 6, 2, 8, 4, 7, 4, 4, 2, 12, 2, 4, 6, 7, 4, 8, 2, 6, 4, 8, 2, 11, 2, 4, 6, 6, 4, 8, 2, 9, 5, 4, 2, 11, 4, 4, 4, 8, 2, 12, 4, 6, 4, 4, 4, 12, 2, 6, 6, 9, 2, 7, 2, 8, 8
Offset: 1
Keywords
Examples
Divisors of 28 are [1, 2, 4, 7, 14, 28]. When A258851 is applied to them, we get five distinct values: [0, 1, 4, 4, 15, 44] (because A258851(4) = A258851(7) = 4), thus a(28) = 5, one less than A000005(28)=6.
Links
Programs
-
PARI
A258851(n) = n*sum(i=1, #n=factor(n)~, n[2, i]*primepi(n[1, i])/n[1, i]); \\ From A258851 A322986(n) = { my(m=Map(),s,k=0); fordiv(n,d,if(!mapisdefined(m,s=A258851(d)), mapput(m,s,s); k++)); (k); }; \\ Or maybe more efficiently as, after David A. Corneth's Oct 02 2018 program in A319686: A322986(n) = { my(d = divisors(n)); for(i=1, #d, d[i] = A258851(d[i])); #Set(d); };
Formula
a(n) <= A000005(n).