A323013 Form of Zorach additive triangle T(n,k) (see A035312) where each number is sum of west and northwest numbers, with the additional condition that the first element T(n,1) is a Fibonacci number.
1, 2, 3, 5, 7, 10, 8, 13, 20, 30, 21, 29, 42, 62, 92, 34, 55, 84, 126, 188, 280, 89, 123, 178, 262, 388, 576, 856, 144, 233, 356, 534, 796, 1184, 1760, 2616, 377, 521, 754, 1110, 1644, 2440, 3624, 5384, 8000, 610, 987, 1508, 2262, 3372, 5016, 7456, 11080, 16464, 24464
Offset: 1
Examples
The start of the sequence as a triangular array T(n, k) read by rows: 1; 2, 3; 5, 7, 10; 8, 13, 20, 30; 21, 29, 42, 62, 92; 34, 55, 84, 126, 188, 280; ...
Programs
-
Maple
with(combinat,fibonacci): lst:={1}:lst2:=lst: for n from 2 to 15 do : lst1:={}:ii:=0: for j from 1 to 1000 while(ii=0) do: i:=fibonacci(j): if {i} intersect lst2 = {} and {i+lst[1]} intersect lst2 = {} then lst1:=lst1 union {i}:ii:=1: else fi: od: for k from 1 to n-1 do: lst1:=lst1 union {lst1[k]+lst[k]}: od: lst:=lst1:lst2:=lst2 union lst: print(lst1): od:
Comments